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Abstract

We present Subtoken Image Transformer (SiT), a novel image tokenization method1

designed to enhance fine-grained visual recognition in Vision Transformers (ViTs).2

We hypothesize that allocating more representational capacity to semantically3

informative regions improves the network’s ability to capture subtle inter-class4

differences. SiT achieves this by dynamically subdividing image tokens into5

subtokens in discriminative regions, enabling finer feature representations without6

increasing global computational costs. SiT builds upon a pretrained ViT backbone7

and employs attention-guided region proposals during training. During inference, a8

lightweight selection network identifies key regions for token subdivision. To assess9

the effectiveness of fine-grained capturing and generalization of SiT, we adopt10

Generalized Category Discovery (GCD) as a challenging evaluation protocol due11

to its requirement to classify known and novel categories by learning discriminative12

features that capture fine-grained inter-class distinctions while remaining invariant13

to irrelevant variations. Experiments on fine-grained GCD benchmarks (CUB,14

FGVC-Aircraft, and Stanford Cars) and coarse-grained GCD benchmarks (CIFAR-15

10 and ImageNet-100) demonstrate SiT’s superiority over state-of-the-art methods,16

revealing semantically critical patches essential for fine-grained discrimination.17

The code will be publicly released upon publication.18

1 Introduction19

Vision Transformers (ViTs) [8] have emerged as a powerful architecture for visual recognition,20

treating an image as a sequence of patch tokens and applying self-attention to model global context.21

Typically, ViTs tokenize images by uniformly dividing them into fixed-size square patches, assigning22

each patch an equal share of computational resources and representational capacity. While this23

uniform tokenization works well for coarse-grained recognition tasks, it falls short in fine-grained24

scenarios where subtle visual cues such as texture differences or small object parts are critical.25

ViT’s default square patch tokenization allocates equal computational resources to all image regions,26

including those irrelevant to distinguishing fine-grained categories. Moreover, small or subtle regions27

may correspond to too few tokens, limiting the model’s ability to capture minute but semantically28

important details (such as subtle shape differences in a bird’s leg), which may not be adequately29

captured by a uniform patch-based tokenization. This limitation prevents models from effectively30

attending to and modeling small yet critical regions that are essential for distinguishing visually31

similar subcategories.32

Recent efforts have explored adaptive tokenization. For instance, SapiensID [15] introduces Retina33

Patch, which concatenates multi-scale image tokens to enhance important regions via a keypoint34

predictor. However, it lacks mechanisms for dynamically reallocating computational resources based35

on regional importance and may introduce unnecessary tokens. MSViT [12] improves efficiency36
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Figure 1: Motivation of SiT. SiT uses attention maps to localize fine-grained details instead of
relying on multi-scale input and coarse region-level resizing. It performs Attention-based Token-level
Subdivision (ATS) to reduce ineffective tokens and focus on discriminative regions.

by selecting between coarse and fine token resolutions via a gating mechanism, yet it remains37

constrained to binary scale choices and cannot flexibly adjust granularity within a region. Motivated38

by these limitations, we propose a novel tokenization strategy that dynamically allocates more39

tokens to the most important regions, ensuring finer granularity in areas crucial for fine-grained40

discrimination. Instead of treating all image regions equally, our approach adaptively subdivides41

tokens in discriminative regions, allowing the model to capture subtle yet critical details while42

reducing redundancy in less informative areas. However, a key challenge lies in determining which43

regions are important for the task without explicit location supervision.44

To tackle this challenge, we propose Subtoken Image Transformer (SiT), a novel tokenization45

method that dynamically refines token representation by allocating more tokens to discriminative46

regions, ensuring finer granularity where needed. An alternative approach called Retina Patch [15]47

uses auxiliary bounding boxes, e.g., detecting the head of a bird, to crop and create multi-scale48

inputs, which is restricted to human knowledge. In contrast, SiT selectively increases resolution only49

in semantically important tokens, enhancing feature representation while maintaining flexibility in50

capturing complex regions. A comparison with existing methods is shown in Fig. 1.51

Specifically, SiT first fine-tunes a pretrained ViT, and then leverages Attention-based Token Sub-52

division (ATS) to refine tokenization dynamically. During training, SiT utilizes attention maps to53

identify and randomly propose highly probable discriminative regions for token subdivision, allowing54

the model to learn fine-grained representations while maintaining generalization across varying sub-55

divisions. This process enables ViT to adapt to subdivided tokens at inference time. During inference,56

instead of random subdivision, SiT employs an auxiliary selection network that deterministically57

identifies key regions for token division. In summary, we make three contributions:58

• We introduce SiT (Subtoken Image Transformer), a novel tokenization strategy that dynamically59

refines token representation by allocating more tokens to discriminative regions.60

• We propose Attention-based Token Subdivision, which uses attention maps from ViT to proba-61

bilistically sample token division locations during training. We introduce a Selection Network62

during testing that deterministically identifies key regions for token division.63

• Extensive experiments on multiple fine-grained datasets and challenging Generalized Category64

Discovery (GCD) task demonstrate that SiT significantly enhances fine-grained recognition on65

unseen categories, outperforming existing methods in distinguishing visually similar subcategories.66
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2 Related Works67

Dynamic Token Scaling. Vision Transformers (ViTs), exemplified by CLIP [22], SigLIP [32], and68

the DINO family [3, 21], partition images into non-overlapping tokens and leverage self-attention for69

feature extraction, contrasting with CNN-based convolutional feature hierarchies. Recent approaches70

address visual feature extraction through distinct architectural strategies. Swin Transformer [19] and71

Pyramid vision transformer [28] employ multi-scale feature aggregation through shifted windowing,72

though they introduce computational redundancy while overlooking intra-image heterogeneity. Kim73

et al. [15] introduces Retina Patch with multi-scale tokens concatenation for ViT. These methods74

demonstrate the importance of spatial adaptation but lack dynamic resource allocation mechanisms75

for region-specific processing demands. MSViT [12] proposes a mix-scale tokens using a learnable76

gating to choose between coarse or fine tokens in every region, but fails to provide flexible choices in77

subtokenization. In this work, we propose an Attention-based Token Subdivision (ATS), dynamically78

subdividing tokens to amplify discriminative features while maintaining pretrained ViT efficiency.79

Fine-grained Localization. Fine-grained localization pinpoints discriminative features critical for80

inter-class differentiation, primarily via keypoint detection [2, 9, 29, 14, 25] and class activation maps81

(CAMs). However, defining consistent keypoints for generic objects (e.g., industrial products) [30, 31]82

remains challenging due to the lack of anatomical priors, risking overemphasis on unimportant83

features. CAM-based methods [6, 13, 35] generate class-specific saliency maps to identify crucial84

regions, but are limited in propagating them into feature refinement. To bridge this gap, we propose an85

attention-driven token selection method that identifies and amplifies discriminative tokens, optimizing86

fine-grained classification without relying on predefined keypoints.87

Generalized Category Discovery (GCD). GCD tackles the task of jointly recognizing known88

classes and discovering novel categories in unlabeled data, as formalized by Vaze et al. [26] and Cao89

et al. [1]. GCD extends novel category discovery (NCD) [11, 33, 34, 10] by requiring models to90

simultaneously leverage labeled data and partition unlabeled novel subcategories. We adapt the GCD91

task to evaluate the fine-grained capturing capability of SiT and investigate two aspects: (1) Which92

object tokens are pivotal for fine-grained differentiation? and (2) Can targeted token subdivision93

enhance feature discernibility?94

3 Methods95

3.1 Preliminary96

Image Tokenization. Given an image tensor x ∈ RC×H×W , ViTs partition x into N = H
P × W

P97

non-overlapping patches, where P is the patch size. All patches are stacked into an image patch98

sequence I ∈ RN×C×P×P . Then I is flattened in its last three dimensions, and a learnable projection99

matrix Wp ∈ RCP 2×D (i.e., patch embedding layer) transforms I into patch embeddings, combined100

with positional embeddings Epos ∈ RN×D to generate the input token sequence z0 ∈ RN×D.101

Attention Map. For input tokens zl ∈ RN×D at transformer block l, the self-attention mech-102

anism computes queries Q = zlWQ, keys K = zlWK , and values V = zlWV , where103

WQ,WK ,WV ∈ RD×dk are learnable weights to generate attention map Al ∈ RN×N . Con-104

ventionally, the attention map from the CLS token Al,CLS ∈ RN represents the global attention for105

the model. Each element Al,CLS(i, j) quantifies how many tokens i attend to token j, reflecting the106

model’s focus on discriminative regions (e.g., object parts). Higher values indicate stronger semantic107

relevance between tokens. ViTs exhibit hierarchical attention patterns across layers, with deeper108

blocks increasingly focusing on semantically fine-grained details, while shallow layers prioritize on109

low-level textures or global context [8, 4].110

For Multi-Head Self-Attention (MHSA), attention maps are gathered from all heads Âl,CLS ∈111

RNhead×N where Nhead is the number of head. We illustrate how we select the most important112

attention map in Sec. 3.3.113
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Figure 2: Overview of ATS. We select the top-K patches based on the attention map for subdivision.
We select the neighboring positional embedding for interpolation purpose.

3.2 Attention-based Token Subdivision (ATS)114

Defining consistent keypoints for generic objects remains challenging due to the lack of anatomical115

priors, risking overemphasis on non-discriminative features. We introduce ATS to leverage knowledge116

from attention maps.117

Image Subdivision. As shown in Fig. 2, given an image patch sequence I and its attention map118

Ah
l,CLS from head h, we locate the top K patch set T ∈ RK×(C×P×P ) sorted by the attention scores.119

For each patch, we generate f×f number of subtokens. We first resize each patch by120

T̂i=Upscale(Ti, factor=f), T̂i ∈ RC×(fP )×(fP ). (1)

Then we divide the interpolated patch into smaller patches for all m,n ∈ {0, . . . , f − 1} in an f × f121

grid. Specifically, one subtoken is defined as:122

T̂
(m,n)
i = T̂i[:,mP : (m+1)P, nP : (n+1)P ], (2)

where all subtokens are denoted as:123

T ′ =

K⋃
i=1

f−1⋃
m=0

f−1⋃
n=0

T̂
(m,n)
i ∈ RKf2×(C×P×P ). (3)

Put it simply, subtokens are created by upscaling and dividing each patch. T ′ concatenates with I124

to perform the input patch sequence Iin to the patch embedding layer. Note that we do not drop T125

after obtaining T ′. We believe that T and T ′ can provide multi-scale information for fine-grained126

classification. The effect of dropping T can be found in Sec. 4.3.127

Positional Embedding Interpolation. Positional embeddings (PE) are also subdivided in a similar128

fashion to image patches. However, while image patches can be upscaled due to their spatial129

resolution, a positional embedding at a particular location is a vector and cannot be directly upscaled130

without remaining unchanged across the newly introduced positions.131

To address this, we expand each positional embedding into a spatial structure by using its neighboring132

positional embeddings. Given an original positional embedding Epos,i, we generate an upscaled133

embedding patch using spatial interpolation:134

Êpos,i = Upscale({Epos,j | j ∈ N (i)}, f), (4)

where N (i) represents the set of eight neighboring adjacent positional embeddings. After interpola-135

tion, we divide Êpos,i into smaller positional embeddings in an f × f grid, similar to image patch136

subdivision:137

Ê
(m,n)
pos,i = Êpos,i[:,mP : (m+1)P, nP : (n+1)P ], (5)
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Figure 3: Two-Stage Fine-tuning Framework. Stage 1 performs attention shift adaptation through the
randomized selection of attention maps for SiT fine-tuning. Stage 2 introduces a selection network
that predicts attention map importance probabilities using selection loss (right), computed as feature
degradation distance with maximum-distance head indices as pseudo-labels for selection prediction.

for all m,n ∈ {0, . . . , f − 1}. We then gather all subdivided positional embeddings into the final138

expanded set:139

ET ′

pos =

K⋃
i=1

f−1⋃
m=0

f−1⋃
n=0

Ê
(m,n)
pos,i ∈ RKf2×D. (6)

Finally, the expanded positional embeddings are concatenated with the original positional embeddings140

to maintain spatial consistency in the input sequence:141

znew
0 = WpI

in +Concat(Epos, E
T ′

pos). (7)

This method ensures that newly introduced PE retains meaningful spatial structure.142

3.3 Two-stage Fine-Tuning143

A key challenge in subtoken division is to select the most informative regions during training.144

Random selection risks overlooking discriminative features, while a natural alternative—using145

attention maps—can be too restrictive. Selecting the top-K patches based on the average attention146

map across all heads results in low diversity, as it repeatedly emphasizes a narrow subset of regions.147

To address the above challenges, we propose a two-stage fine-tuning framwork: 1) SiT fine-tuning148

and 2) Selection training, as shown in Fig. 3 (left).149

• Stage 1: Randomized Top-K Selection. Instead of averaging attention maps across all heads, we150

randomly sample from individual attention heads during training. This encourages diverse region151

selection, exposing the model to different semantic patterns and enhancing its ability to learn robust152

discriminative features.153

• Stage 2: Head Selection for Inference. A mismatch arises because inference relies on the averaged154

attention map, which may not align with the head-specific selections during training. To address155

this, we introduce a selection network that identifies the most informative attention head, ensuring156

consistency between training and inference while preserving focus on critical regions.157

SiT Fine-Tuning (Stage 1). The first-stage fine-tuning of the SiT aligns the model’s attention158

mechanisms with the target dataset distribution by simulating diverse attention behaviors. We159

stochastically sample attention maps Ah
l,CLS from layer l and head h to construct dynamic token160

sequences, addressing three key challenges: (1) interpolated positional information for subtokens,161
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preserving spatial relationships across scales; (2) integrated subtokens for attention focus (i.e.,162

I + T ′) to balance global and local attention; and (3) enriching token diversity through head-163

wise stochastic sampling. This stage ensures robust subtokens feature extraction while preserving164

pretrained knowledge for stage 2 refinement.165

Selection Training (Stage 2). Stage 2 identifies semantically critical regions for more precise166

token subdivision for further fine-tuning. We introduce a lightweight selection network, prioritizing167

attention maps that focus on discriminative regions. The selection network consists of an attention168

map branch and an image feature branch that takes Âl,CLS and image feature from the ViT as input169

and predicts the selection probability Ypred ∈ RNhead . Since ground-truth labels for optimal region170

selection are unavailable, we propose a self-supervised selection loss as shown in the right side of171

Fig. 3. The idea of selection loss is that the proximity between original features (i.e., I only) and172

degraded features (obtained by discarding tokens T and T ′) indicates the discriminative power of the173

discarded tokens. High proximity suggests T and T ′ contribute minimally to fine-grained distinctions,174

while low proximity implies T and T ′ encode critical fine-grained cues, necessitating their retention.175

We take the fine-tuned ViT from stage 1 and proceed original features xori and degraded feature176

xh
drop ∈ RNhead×D for attention map Âh

l,CLS of head h. Let Ytrue ∈ RNhead represents the distance177

between xori and xdrop, the selection loss is defined as:178

LSL = − 1

Nhead

Nhead∑
h=1

argmax(Y
(h)

true ) log
(
Y

(h)
pred

)
, (8)

where Y
(h)

true is the ground-truth one-hot encoded label. argmax(Y
(h)

true ) represents the index of xdrop179

with maximum distance towards xori. We further fine-tune ViT and train the selection layer. The180

total loss for stage 2 is shown as follows, where β is a hyperparameter to control the weight of LSL:181

Lall = LSE + βLSL. (9)

4 Experiments182

4.1 Experimental Setup183

Datasets. We evaluate our approach on fine-grained datasets: CUB-200 [27], FGVC-Aircraft [20],184

and Stanford-Cars [16]. In addition, we demonstrate the versatility of our method on coarse-grained185

datasets: CIFAR10 [17], and ImageNet-100 [7]. This comprehensive evaluation underscores the186

broader applicability of our approach beyond fine-grained classification tasks. Detailed statistics of187

the datasets are provided in the Appendix.188

Baseline Setup. We compare SiT with classic ViT [5], Retina Patch [15] and MsViT [12] which189

apply different strategies towards image tokenization. For a fair comparison, we use the same loss190

function and hyperparameters proposed by SelEx [23]. We use CapeX [24] as the keypoint predictor191

for Retina Patch. Details of the Retina Patch implementation are provided in the Appendix.192

Implementation Details. We follow SelEx [23] to set up known, novel categories for all datasets193

and use DINOv2 [21] pretrained on ImageNet 22K [18] and DINOv1 [3] pretrained on ImageNet194

1K. We use the batch size of 128 for training and set the same loss hyperparameters as SelEx. We195

use DINOv2 and DINOv1 as pretrained ViT and fine-tune the last two blocks. We use the bilinear196

function as the interpolation function. We set K = 10% (i.e., top 10% of image tokens) for CUB,197

K = 2% for Aircraft, and K = 1% for SCars. f = 2 for scale factor and learning rate lr = 0.1 for198

fine-tuning ViT in stage 1 and stage 2, lr = 1e−4 for selection network. β is set to 1.199

4.2 Comparison with State-of-the-Art200

Fine-grained Image Classification. Our method is evaluated against baseline approaches on three201

fine-grained datasets, as summarized in Tab. 1. The results demonstrate the superior capability202

of our method in both the all and novel category classifications, highlighting its effectiveness for203

fine-grained recognition. Compared to Retina Patch, our method achieves better performance with204
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Table 1: Comparison with baseline methods for fine-grained image classification. Our method
outperforms baseline methods in most settings (All, Known, Novel), with significant improvement in
the Novel, indicating the effectiveness of SiT. Bold and underlined numbers indicate the best and
second-best accuracies, respectively. [Keys: ∗: reported from [23].]

Method
CUB-200 FGVC-Aircraft Stanford-Cars Average

All Known Novel All Known Novel All Known Novel All Known Novel
D

IN
O

v1 ViT* 73.6 75.3 72.8 57.1 64.7 53.3 58.5 75.6 50.3 63.0 71.9 58.8
MsViT 73.5 74.9 72.8 55.6 64.5 51.2 52.6 74.0 42.3 60.6 71.1 55.4
Retina Patch 71.6 73.5 70.7 52.9 57.7 50.5 52.0 72.9 41.9 58.8 68.0 54.4
SiT (Ours) 75.7 76.4 75.4 57.5 64.1 54.2 59.3 76.0 52.1 64.2 72.2 60.6

D
IN

O
v2 ViT* 87.4 85.1 88.5 79.8 82.3 78.6 82.2 93.7 76.7 83.1 87.0 81.3

MsViT 88.3 85.7 90.0 79.9 79.6 80.0 81.9 93.1 76.5 83.4 86.1 82.2
Retina Patch 87.8 86.1 88.8 73.2 74.0 72.8 80.4 93.8 73.9 80.5 84.6 78.5
SiT (Ours) 91.8 86.3 94.6 80.8 81.3 80.5 83.8 94.9 78.5 85.5 87.3 84.7

Table 2: Comparison with baseline methods for coarse-grained image classification. Bold num-
bers show the best accuracies. Our method has a consistent performance for the three experimental
settings (All, Known, Novel), demonstrating its applicability to coarse-grained classification.

CIFAR-10 ImageNet-100 Average
Method All Known Novel All Known Novel All Known Novel

DINOv1 95.9 98.1 94.8 83.1 93.6 77.8 89.5 95.6 86.3
SiT (Ours) 96.7 97.5 96.3 83.9 94.0 78.9 90.8 95.8 87.6

fewer tokens by focusing on crucial regions, highlighting that excessive, non-essential tokens may205

introduce noise and are less compatible with pretrained ViTs. While MSViT improves computational206

efficiency, its fine-scale tokens offer limited benefits for fine-grained recognition tasks. Both MsViT207

and Retina Patch exhibit degraded performance on GCD, revealing that they either fail to generalize208

to pretrained ViT architectures or offer limited additional fine-grained information. The performance209

improvements can be attributed to SiT’s ability to provide crucial fine-grained semantic tokens across210

multiple scales, enabling the model to prioritize discriminative details without the need to modify211

the loss function, architecture, or fine-tuning strategy. Notably, the larger performance gain on novel212

categories (3.4% versus 0.3% on known classes) underscores our method’s reduced susceptibility to213

overfitting and enhanced generalization to unseen objects.214

Coarse-grained Image Classification. We also validate our method on generic image classification215

tasks that focus on coarse-grained objects in Tab. 2 using the backbone DINOv1 [3] as the baseline216

to show the effectiveness of our methods with different backbones. Our method demonstrates217

the superior performance of CIFAR10 and ImageNet-100 compared with DINOv1 fine-tuned with218

the same loss function. Note that SiT is designed for fine-grained classification; our method still219

has performance gains in generic objects, which highlights the robustness of SiT. The result also220

demonstrates that detailed regions are also important for generic image classification, even though221

the coarse-grained objects have a larger diversity than fine-grained objects.222

4.3 Ablation Studies223

Effects of Token Selection Methods. We compare our token selection strategy against two sampling224

strategies: (1) random sampling of K tokens, (2) averaged attention maps with top-K selection.225

The performance comparison is shown in Tab. 3a. Our method outperforms random sampling and226

averaged attention map with the same number of tokens, demonstrating that selecting the crucial227

region for subdivision is important. Fig. 4 reveals a consistent focus on discriminative regions (e.g.,228

avian wingtips), providing interpretable insights into intra-class recognition.229

Effects of Hyperparameters. Tab. 3b presents the effects of scale factor f and top-K selection.230

We conduct the ablation using the stage 1 fine-tuned SiT for comparison. The optimal performance231

occurs at f = 2 with K = 10%, suggesting moderate scaling enables effective utilization of more232
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Table 3: Ablation studies of SiT on CUB. (a) Effects of token selection methods; (b) Effects of f
and K; (c) Effects of Masking tokens.

(a) Token selection methods.

Method # Tokens All Known Novel

DINOv2 256 87.4 85.1 88.5
Random 356 82.4 85.2 81.0
Average 356 89.0 84.6 91.2
Ours 356 91.8 86.3 94.6

(b) Scale factor f and top K.

f K(%) All Known Novel

2 1 90.3 84.0 93.5
2 10 91.8 86.3 94.6
3 1 90.4 84.2 93.6
3 10 90.7 85.9 93.3

(c) Masking tokens.

Method All Known Novel

Ours 91.8 86.3 94.6

w/o T 90.9 84.5 94.1
w/o T ′ 89.7 84.6 92.4
w/o T + T ′ 68.6 65.1 70.3

Table 4: Two-stage fine-tuning performance comparison On Aircraft and Scars. The results
indicate the effectiveness of the proposed two-stage training.

(a) Stage 1 and 2 Comparison on Aircraft.

Method All Known Novel

DINOv2 79.8 82.3 78.6

Stage 1 80.0 81.0 79.3
Stage 2 80.8 (+0.8%) 81.3 (+0.3%) 80.5 (+0.8%)

(b) Stage 1 and 2 Comparison on Scars.

Method All Known Novel

DINOv2 82.2 93.7 76.7

Stage 1 83.0 93.6 78.0
Stage 2 83.8 (+0.8%) 94.9 (+1.1%) 78.5 (+0.5%)

Table 5: Comparison of inference efficiency and resource usage. Token count is averaged per
image. All measurements are taken with batch size 128 on a NVIDIA A6000 GPU.

Model # Tokens Runtime (ms) Memory (MB) FLOPs (G)
DINOv2 256 393 1078 2854.9
MSViT 256 422 1175 2859.6
Retina Patch 711 1744 4525 10583.2

SiT (K = 10%) 356 1064 2144 6885.9
SiT (K = 2%) 276 877 2144 6010.8
SiT (K = 1%) 264 855 2145 5879.5

patches. Smaller f values better accommodate larger K by maintaining patch diversity, while larger233

f requires a more conservative K selection to avoid redundant overlapping patches.234

Effects of Token Masking. We analyze token masking strategies through Tab. 3c, revealing235

complementary roles of tokens T and subtokens T ′. Our method achieves optimal performance236

using all tokens. Masking T ′ alone causes 2.1% Novel accuracy drop versus 0.5% when masking237

T , confirming T ′’s greater contribution. Crucially, masking both triggers catastrophic collapse,238

demonstrating their synergy: T establishes base patterns while T ′ encodes fine details. The significant239

2.1% novel class recognition gap highlights T ′’s critical role in handling unseen categories.240

Performance Comparison of Stage 1 and 2. Tab. 4 compares both stages, where Stage 1 with241

averaged attention maps already surpasses the baseline. Stage 2’s selection training brings further242

gains, demonstrating its effectiveness in prioritizing critical patterns. While Stage 2’s absolute im-243

provement is smaller, it refines Stage 1’s diverse attention by selecting informative tokens, enhancing244

both discriminative power (through subcategory-specific semantics) and interpretability (via salient245

pattern highlighting). This synergy shows that Stage 1 establishes attention diversity while Stage 2246

optimizes semantic focus for fine-grained recognition.247

Computation Cost. Despite the increased computational cost compared to traditional ViT, our248

SiT models maintain accessible runtime and memory usage. The higher FLOPs mainly result from249

additional fine-grained token refinement that is essential for achieving strong performance on fine-250

grained recognition tasks. Importantly, the resource demand remains significantly lower than Retina251

Patch, making SiT a practical and scalable solution for real-world deployment.252

Fine-grained Details Analysis. Quantitative results reveal consistent selection of discriminative253

regions (Fig. 4), precisely localizing class-critical patterns (e.g., avian wing trailing edges) while254

preserving contextual continuity. The method adapts to domain-specific features: attention heads255
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Figure 5: Distributions of head selection frequency. The head selection distribution pattern implies
the varying importance (or roles) of different heads for the target datasets. We select one example
from each dataset to visualize the attention pattern of each head in the last layer of DINOv2.

focus on wingtips for birds, turbines for aircraft, and headlights for vehicles. Fig. 5 analyzes attention256

head selection across fine-grained datasets, highlighting domain-specific critical regions. Notably,257

permanently unselected heads across categories suggest architectural redundancy, indicating that258

potential head pruning could optimize ViTs. This targeted selection enhances fine-grained recognition259

by emphasizing subtle but decisive visual cues. Additional visualizations in the Appendix.260

5 Conclusion261

This work presents SiT, a novel Subtoken Vision Transformer that enhances fine-grained recognition262

through dynamic image tokenization. By developing attention-based token subdivision and selection263

mechanisms, our method enables localized resolution enhancement in discriminative regions while264

maintaining global contextual understanding. Extensive validation on fine-grained and coarse-265

grained benchmarks demonstrates SiT’s superior performance over existing approaches. The learned266

attention patterns reveal semantically meaningful regions aligned with domain expertise, providing267

interpretable evidence for model decisions. The proposed two-stage fine-tuning strategy effectively268

enhances the model’s capability of fine-grained representation and focuses on crucial regions, bridges269

pretrained representations and downstream tasks without architectural modifications.270
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