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Abstract

Multi-modal large language models (MLLMs) have demonstrated remarkable pro-1

ficiency in general vision-language tasks but struggle with Fine-grained Visual2

Recognition (FGVR), which demands distinguishing highly similar subcategories3

through nuanced visual perception and systematic reasoning. Current methods face4

critical limitations, including overfitting during fine-tuning, degraded generaliza-5

tion, and unreliable reasoning processes that often lead to plausible yet incorrect6

rationales. To address these challenges, we propose ReFine-RFT, a Reinforcement7

Fine-Tuning (RFT) framework that enhances MLLMs’ reasoning capabilities for8

FGVR while preserving their general-purpose performance. ReFine-RFT integrates9

Group Relative Policy Optimization (GRPO) with two types of specially designed10

reward functions: enhanced rule-based rewards for instruction adherence and11

classification accuracy, and a novel MLLM-based reasoning reward evaluated by12

a teacher MLLM to ensure a rational reasoning process. Additionally, we introduce13

the Reasoning-Answer evaluation protocol, which jointly assesses recognition14

accuracy, reasoning quality, and instruction-following capability. Extensive experi-15

ments on six FGVR benchmarks demonstrate the state-of-the-art performance of16

ReFine-RFT, achieving significant improvements in both accuracy and reasoning fi-17

delity while maintaining data efficiency. Our work bridges the critical gap between18

MLLMs’ reasoning capacity and fine-grained visual understanding, advancing19

toward trustworthy and expert-level visual recognition systems. The code and20

model will be publicly released upon publication.21

1 Introduction22

Multi-modal large language models (MLLMs) have emerged as a prominent paradigm for integrating23

vision and language, enabling unified interpretation of images and generation of coherent textual24

responses. While MLLMs excel at general vision-language tasks such as image captioning and25

visual question answering, their performance on Fine-grained Visual Recognition (FGVR)—which26

demands distinguishing highly similar subcategories (e.g., bird species or car models with subtle27

visual differences)—remains suboptimal [14]. Success in FGVR requires not only high-fidelity visual28

perception to identify nuanced distinctions but also systematic understanding of domain-specific29

knowledge or comparative attribute analysis. For example, differentiating a Black-footed Albatross30

from a Laysan Albatross involves fine-grained cues such as leg color and beak shape, which are31

often challenging without domain-specific knowledge. Bridging the gap between MLLMs’ reasoning32

capacity and their ability to discriminate fine-grained visual features is thus critical for advancing33

expert-level visual understanding.34

Yet, current MLLMs face key limitations in visual perception tasks, particularly in fine-grained visual35

recognition (FGVR). First, as shown in Fig. 1, naive fine-tuning on fine-grained datasets often leads36
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Which of these birds is shown in the image? 
Choices:

A. Pomarine Jaeger

B. Black footed Albatross

C. Sooty Albatross

D. Laysan Albatross

FGVR Example

…

<think> The bird in the image is brown in color with a 
large beak. This description matches the characteristics 
of a bird from the albatross family. To determine which 
species is shown in the image, we need to look for any 
distinguishing features.

<think>
The bird in the image has a distinctive white ring around 
its eye, which is characteristic of the Black-footed 
Albatross. This species is known for its large size, dark 
feet, and the white ring around the eye, which is often 
referred to as a ""ringlet."" The bird's brownish plumage 
and overall appearance also match the description of the 
Black-footed Albatross.
</think>
<attribute>
- Species: Black-footed Albatross
- Coloration: Brownish plumage with a ringlet
- Size: Large
</attribute>
<answer>
B. Black_footed_Albatross
</answer>

C. Sooty Albatross

B. Black footed Albatross

Answer with the letter from the 
given choices directly.

Instruction 1

Answer the correct choice and 
its category name.

Instruction 2

Output your reasoning inside <think> 
</think> tags… 

Describe the attributes in the image 
inside <attribute> </attribute> tags … 

Provide the correct choice and its 
category name inside <answer> 
</answer> tags.

Instruction N

Ours has strong 
instruction following  & 

reasoning capability! 

B

Wrong answer & poor reasoning

B

Figure 1: Left: Prior works fine-tune MLLMs on large and richly annotated datasets, which (i)
significantly reduce cross-task generalization and (ii) yield poor instruction-following and reasoning
with diverse instructions. ReFine-RFT is trained on small and simply formatted few-shot datasets,
achieving strong reasoning performance and accuracy while maintaining broad generalization.

to overfitting to narrow domains, compromising the model’s general-purpose vision-language capa-37

bilities. Second, MLLMs struggle to capture subtle visual distinctions such as differences in aircraft38

turbines or bird wingtips [41], which are essential for FGVR. Third, performance further deteriorates39

when reasoning is required [25, 39, 20]: producing step-by-step explanations or format-constrained40

outputs can reduce accuracy, as models may be distracted by irrelevant details or overwhelmed by41

longer prompts, resulting in plausible but incorrect rationales and misclassification among visually42

similar categories. Moreover, conventional classification metrics focus solely on final answer ac-43

curacy and overlook the quality and generalizability of the reasoning process. While such metrics44

may reward high nominal performance, they often incentivize superficial heuristics such as pattern45

matching or statistical guessing, rather than genuine semantic or visual understanding. As a result,46

models remain brittle under slight variations in question phrasing or when required to produce explicit47

chain-of-thought (CoT) explanations. This highlights the need for more rigorous evaluation protocols48

that assess a model’s ability to holistically interpret multimodal inputs and reason in a logically49

grounded manner—an essential step toward building trustworthy AI systems.50

To address these challenges, we propose ReFine-RFT, a Reinforcement Fine-Tuning (RFT) frame-51

work that enhances MLLMs’ fine-grained reasoning capabilities in a data-efficient and generalizable52

manner. To mitigate overfitting to narrow domains, ReFine-RFT adopts Group Relative Policy53

Optimization (GRPO) [13], enabling robust training with limited supervision. To address MLLMs’54

difficulty in capturing subtle visual cues, we introduce enhanced rule-based rewards with structured55

reasoning tags: <think>...</think> , <attribute>...</attribute> , and <answer>...</answer> ,56

which guide the model to attend to intra-class distinctions through interpretable outputs. Finally, to57

improve reasoning without sacrificing recognition accuracy, we propose a MLLM-based reasoning58

reward computed by a teacher MLLM that evaluates the relevance and accuracy of the model’s59

explanation given the image. Teacher MLLMs [15, 48] are employed for their advanced reasoning60

abilities and consistently superior performance, and this external guidance incentivizes the student61

MLLM to internalize high-quality reasoning without requiring manually annotated rationales. In62

addition, we introduce a new evaluation protocol, the Reasoning-Answer setting, which jointly63

assesses recognition accuracy, instruction-following, and explanation quality using a powerful MLLM64

(e.g., GPT [2]) as the evaluator.65

In summary, our contributions are as follows:66

• We propose ReFine-RFT, a novel fine-tuning framework that enhances MLLMs’ reasoning67

capabilities for FGVR while preserving its generalization in a data-efficient manner.68
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• We design two FGVR rewards: enhanced rule-based rewards for instruction-following and69

classification accuracy, and MLLM-based reasoning reward for reasoning performance.70

• We extend the FGVR benchmarks with a new evaluation protocol called Reasoning-Answer setting71

to evaluate MLLMs on instruction-following, reasoning, and answering.72

• Extensive experiments on the FGVR benchmarks demonstrate the superiority of ReFine-RFT,73

achieving SoTA performance in reasoning quality, recognition accuracy, and instruction-following.74

2 Related Works75

Fine-grained Visual Recognition in MLLMs. Fine-grained Visual Recognition (FGVR) [42, 45]76

is a classic problem in computer vision, focused on distinguishing objects at the subcategory level77

(e.g., differentiating bird species, and car makes). With the advent of large vision-language models,78

researchers have begun exploring how these models can be adapted for FGVR. Recent methods79

have shown that incorporating the language modality can be beneficial: for instance, classification80

performance can be enhanced via a textual description of the given image [33]. Other approaches [41,81

8, 24, 4] fine-tune MLLMs on FGVR benchmarks to improve the visual discrimination of MLLMs.82

For example, Finedefics [14] propose an informative description construction for the FGVR training83

set and a two-stage fine-tuning to align the visual features with the textual descriptions and category84

names. However, existing methods either rely on large-scale data or lack logical reasoning and85

generalization. We propose a data-efficient framework that improves accuracy, enhances reasoning,86

and preserves strong generalization.87

Reasoning Ability of MLLMs. Beyond answering capability, the reasoning of MLLMs has become88

a focal point of recent research. Investigation of the reasoning capability of MLLMs starts from89

Chain-of-thought (CoT) prompting, which generates an intervening string of tokens that increases90

the probability of producing the correct answer by thinking step-by-step [44, 29, 50, 49]. Inspired91

by DeepSeek-R1-Zero [13], which introduces a rule-based Reinforcement Learning (RL) method92

that significantly improves reasoning, researchers start to investigate the effects of RL in enhancing93

the reasoning capability of MLLMs [40, 17, 36, 32]. However, Shaikh et al. [35], Liu et al. [25], Yu94

et al. [46] reveal that reasoning can also produce harmful outputs that degrade the performance,95

which is counterintuitive to human expectations. MLLMs can produce convincing explanations96

that are nevertheless flawed or irrelevant to the true distinctions. To address this, we introduce the97

Reasoning-Answer protocol for evaluating reasoning quality, and an MLLM-based reasoning reward98

to explicitly enhance it.99

Reinforcement Fine-tuning (RFT). Early research primarily focused on RL from Human Feedback100

(RLHF), which aimed to align model outputs with human preferences [30, 3, 38]. Recent advance-101

ments demonstrate that RL can significantly enhance the reasoning capabilities of these models.102

For instance, DeepSeek-R1 [13] highlights the effectiveness of RL in improving LLMs’ reasoning103

abilities by proposing a Group Relative Policy Optimization (GRPO) framework with rule-based104

rewards. Follow-up works like Visual-RFT [26], VLM-R1 [36], and LMM-R1 [32] explore GRPO in105

specific domains such as image classification, visual grounding, or the text-only domain. While prior106

works have proposed various rule-based rewards (e.g., classification accuracy or IoU [26, 36]), these107

are primarily task-specific and lack a direct focus on reasoning quality. In contrast, our approach in-108

troduces an MLLM-based reasoning reward, offering a level of reasoning supervision that rule-based109

rewards cannot provide.110

3 Methods111

In this section, we present an overview of the ReFine-RFT framework. Building on the success of112

DeepSeek-R1-Zero [13], we adopt Group Relative Policy Optimization (GRPO) as the reinforcement113

fine-tuning (RFT) strategy and introduce two types of rewards: enhanced rule-based rewards and a114

novel MLLM-based reasoning reward. The overall architecture of ReFine-RFT is illustrated in Fig. 2.115

3.1 Rule-based Rewards116

The goal of rule-based rewards is to improve the instruction-following capability and answer accuracy117

of MLLMs. We introduce two rule-based rewards: format reward and classification reward.118
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Which of these birds is shown in the 
image?

Choices:

A. Bank Swallow

B. Cliff Swallow

C. Barn Swallow

D. Tree Swallow

<Instruction>

Model
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𝑜2

𝑜𝐺

… Enhanced rule-based rewards

MLLM-based reasoning reward
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Format 
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Reward
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𝑟𝑐𝑙𝑠
𝑖

𝑜𝑖
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Figure 2: Overview of ReFine-RFT. Given a question, the model generates multiple responses, each
evaluated with both rule-based rewards (format and classification rewards) and an MLLM-based
reasoning reward via a judgment teacher model. Final normalized rewards are used with the policy
gradient optimization algorithm to update the model.

Format Reward. Traditional format reward Rf (oi) ensures strict adherence to a predefined structured119

response format for the model response oi, which is widely used in [13, 26, 36]. Unlike traditional120

methods that enforce basic tag generation (e.g., <think>...</think> and <answer>...</answer> ),121

ReFine-RFT introduces a specialized <attribute>...</attribute> tags (denoted as Rfa(oi)) tai-122

lored for the FGVR task, explicitly prompting the model to describe discriminative visual at-123

tributes critical for fine-grained recognition. The reward is assigned a binary value: 1 if the re-124

sponse strictly follows the sequential structure: <think>...</think> , <attribute>...</attribute> ,125

<answer>...</answer> , and 0 otherwise.126

Classification Reward. Based on prior methods Liu et al. [26], Shen et al. [36], we use the127

classification reward Rcls(ai, y) to quantify the classification accuracy of the model’s final prediction128

within the <answer>...</answer> tags. This metric is computed by verifying alignment between129

the predicted class ai in the <answer>...</answer> tags of oi and the ground-truth label y, yielding130

a score of 1 for correct predictions and 0 for errors. To enforce structured output compliance, the131

reward is 0 if the <answer>...</answer> tags are omitted or improperly formatted:132

Rcls(ai, y) =

{
1, if ai = y,

0, otherwise.
(1)

3.2 MLLM-based Reasoning Reward133

Limitations of Synthetic Reasoning Data. Curating high-quality human-annotated reasoning134

datasets for specialized tasks is inherently resource-intensive. While conventional methods circumvent135

this by leveraging synthetic data generated by powerful models (e.g., GPT-4o [2]), such approaches136

impose an implicit constraint: the fine-tuned model becomes confined to the reasoning patterns and137

biases present in the pre-generated data. This artificially narrows the model’s exploration space,138

limiting its capacity to discover novel or contextually adaptive reasoning pathways.139

MLLM-based reasoning reward. Motivated by the LLM-as-judge paradigm [51], we propose a140

novel MLLM-based reasoning reward, e.g., Rcot(oi, x). Our framework employs an MLLM as a141

teacher model (denoted as Fteacher) to assess reasoning quality in context. This choice is motivated142

by the observation that stronger MLLMs, such as bigger or closed-source models, demonstrate143

more reliable judgment of reasoning quality, especially in visually grounded tasks where nuanced144

interpretations are required. For a generated response oi, we concatenate it with the input image x145

into a judge prompt J (shown in Fig. 3). Fteacher evaluates two critical dimensions: (1) factual146

accuracy of visual descriptions based on the image, and (2) helpfulness of these descriptions to the147

final recognition task. Rcot(oi, x) can be formulated as:148

Rcot(oi, x) = Fteacher(x⊕ J ⊕ oi). (2)

3.3 Group Relative Policy Optimization (GRPO)149

In contrast to RL algorithms such as Proximal Policy Optimization (PPO) [34]— which rely on a150

critic model to assess policy performance, GRPO eliminates the need for the critic model by directly151
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Judge Prompt

You are tasked with evaluating the reasoning provided by a model in identifying an object from an
image. Based on the image and the reasoning content between the <think> and <attributes> tags,
assess whether the reasoning is factually correct, relevant, and helpful for identifying the object.
Output only a score between 0 and 100 (number only, no additional text):
- 100 means the reasoning is completely accurate, relevant, and helpful for classification.
- 0 means the reasoning is completely inaccurate or irrelevant.
- Values between 0 and 100 reflect partial correctness or partial relevance.

Image: <Image>

Response from the model: <Response>

Figure 3: Judge prompt for MLLM-based reasoning reward.

comparing groups of candidate responses. As shown in Fig. 2, for a given question q and image x,152

GRPO requires the model to sample G diverse responses {o1, o2, . . . , oG} from the current model πθ153

and obtains rewards {r1, r2, . . . , rG} for oi based on the reward function R(q, oi):154

R(q, oi) = wfaRfa(oi) + wclsRcls(ai, y) + wcotRcot(oi, x), (3)

where wfa, wcls, and wcot are the reward weights for Rfa, Rcls, and Rcot, respectively. GRPO155

assesses the relative quality by normalizing ri using the mean and standard deviation of the group156

reward:157

Ai =
ri −mean({r1, . . . , rG})

std({r1, . . . , rG})
, (4)

where Ai denotes the advantage of the i-th response. With the group normalization, GRPO encourages158

the model to sample preferred answers with a higher reward. The model is updated via:159

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold

(O|q)

[
1

G

G∑
i=1

min

(
πθ(oi | q)
πθold(oi | q)

Ai,

clip

(
πθ(oi | q)
πθold(oi | q)

, 1− ε, 1 + ε

)
Ai

)
− βDKL

(
πθ ∥ πref

)]
,

(5)

where ε and β are the GRPO clipping hyperparameters and the coefficient weight for controlling the160

Kullback–Leibler (KL) penalty [34], respectively. πref is the reference model.161

4 Extending FGVR Benchmark Evaluation162

As shown in Tab. 1, when we change the prompt from Choice to Both, the performance drops for163

most of the MLLMs. When we change to the CoT prompt, the performance drops even more severely164

across all the models. This degradation reveals that most of the models neither understand the165

instruction nor answer correctly, which is a similar phenomenon to [35, 25]. Seemingly correct166

answers often rely on flawed reasoning, such as logical inconsistencies, hallucinated attributes, or167

misaligned visual-textual grounding. These issues give a false sense of the model’s ability and can168

lead to failures in real-world applications.169

To address this gap, we propose the Reasoning-Answer setting (shown in Fig. 4), which jointly evalu-170

ates both the final prediction and the quality of the model’s reasoning process. Unlike conventional171

accuracy-based metrics, Reasoning-Answer explicitly penalizes models that arrive at correct answers172

through unreliable or incoherent rationales, thereby promoting interpretable and logically grounded173

decision-making, which is critical for trustworthy AI in mission-critical applications. Reasoning-174

Answer introduces a complementary metric called the Reasoning Score (RSC), which is automatically175

computed by a powerful teacher MLLM. Given the input image, question, ground-truth answer, and176

the complete MLLM response, the evaluator produces structured feedback along three dimensions177

using a single unified prompt. Each score ranges from 0 to 10:178
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Which of these aircrafts is shown in the 
image?

Choices:

A. Saab 2000 

B. CRJ-700 

C. DHC-8-300 

D. Saab 340 

Output your reasoning inside <think> </think> 
tags… 

Describe the attributes in the image inside 
<attribute> </attribute> tags … 

Provide the correct choice and its category 
name inside <answer> </answer> tags.

<think>
The aircraft in the image is a regional jet 
with a slender fuselage, a T-tail, and two 
engines mounted on the rear of the 
fuselage. The design and livery are 
characteristic of the CRJ (Canadair 
Regional Jet) series. The CRJ-700 is a 
common model in this series, known for its 
short to medium-range capabilities. 
</think>
<attribute>
- Aircraft Type: Regional Jet
- Series: CRJ-700
- Characteristics: T-tail, slender fuselage, 
two rear-mounted engines
</attribute>
<answer>
B. CRJ-700
</answer>

Reasoning Score (Rsc)

Judger
Response

Q & Img
Accuracy

Usefulness

Obedience

ReFine-RFT (Ours)

Figure 4: Evaluation pipeline for Reasoning-Answer setting. Beyond answer accuracy evaluation,
we introduce a complementary protocol to assess MLLM performance: Reasoning Score (RSC),
which evaluates the quality of the response by a powerful model based on three perspectives: accuracy,
usefulness, and instruction obedience.

Table 1: Performance gaps in using different prompts on FGVC-Aircraft [27] and Oxford-IIIT
Pets [31]. More results are in the Appendix. [Choice: using prompt “Answer with the letter from the
given choices directly”. Both: using prompt “Answer the correct choice and its category name”.
CoT: using the CoT prompt in Fig. 4 (See Appendix for complete prompt).]

Model
Aircraft-102 Pets-37

Choice → Both → CoT Choice → Both → CoT

LLaVA-Next-7B (Mistral) 32.5 10.9 19.4 53.7 37.0 47.5
Idefices2-8B 56.2 2.9 2.5 81.3 2.4 9.4
Finedefics-8B 64.2 64.1 0.0 91.8 87.8 0.0
Qwen2-VL-7B-Instruct 71.2 63.7 18.4 91.0 91.1 77.4

• Answer Accuracy (RSCA): Assesses whether the model’s answer correctly identifies the target179

object based on the given image and question.180

• Reasoning Usefulness (RSCU ): Evaluates whether the explanation meaningfully supports the181

prediction, focusing on the relevance of visual attributes and their utility in fine-grained recognition.182

• Instruction Obedience (RSCO): Measures whether the model follows the instruction (e.g., struc-183

tured format), accounting for formatting inconsistencies that may otherwise hinder fair evaluation.184

This design addresses two critical challenges: the lack of ground-truth reasoning rationales, and185

inconsistent structured-output generation across models. By submitting the model’s full response186

to the evaluator, we ensure fairness even when outputs deviate from strict formats. The evaluation187

prompt and implementation details are provided in the Appendix.188

5 Experiments189

5.1 Experimental Setup190

Datasets. We evaluate ReFine-RFT on six widely adopted FGVR benchmarks: CUB-200 [42],191

FGVC-Aircraft [27], Stanford-Cars [18], Stanford Dogs-120 [18], Flowers-102 [28], and Oxford-IIIT192

Pets [31]. Adhering to established protocols [14, 12], we frame FGVR as a closed-set multiple-193

choice task with predefined answer candidates, using identical test splits for fair comparison. Unlike194

Finedefics [14], which employs 38,254 pretraining and 77,051 fine-tuning samples for hybrid open-195

/closed-set question answering, our approach prioritizes data efficiency. We randomly select 5 images196

per category across all datasets, yielding a curated training set of 3,775 samples exclusively on197

closed-set multiple-choice QA.198
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Table 2: Comparison of accuracy on six FGVR datasets under the Answer-only setting. Each
dataset includes accuracy from Choice and CoT prompts. [#P: parameters count; CH.: Choice
prompt; CoT: CoT prompt; InternLM XCom.2: InternLM XComposer 2]

Model #P Dog-120 Bird-200 Aircraft-102 Flower-102 Pet-37 Car-196 Avg.
CH. CoT CH. CoT CH. CoT CH. CoT CH. CoT CH. CoT CH. CoT

LLaVA 1.5 7B 39.0 – 35.2 – 34.7 – 51.4 – 52.3 – 46.9 – 43.2 –
MobileVLM v2 7B 39.9 – 33.9 – 35.0 – 54.9 – 53.7 – 46.3 – 44.0 –
InstructBLIP 4B 47.1 – 32.2 – 29.2 – 62.3 – 60.0 – 64.6 – 49.2 –
Phi-3-Vision 4B 39.8 – 37.6 – 42.3 – 51.6 – 56.4 – 54.5 – 47.0 –
BLIP2 Flan-T5-XL 4B 46.2 – 33.7 – 32.9 – 64.3 – 65.0 – 67.7 – 51.6 –
InternLM XCom.2 7B 41.5 – 37.4 – 40.5 – 54.3 – 63.2 – 53.9 – 48.5 –
LLaVA-Next 7B 38.9 31.6 34.9 28.9 32.5 19.4 43.9 39.4 53.7 47.5 49.5 29.7 42.2 32.8
Idefics2 8B 58.0 11.6 47.2 14.2 56.2 2.5 72.8 7.2 81.3 9.4 80.3 10.3 66.0 9.2
Finedefics 8B 73.1 0.0 57.3 0.0 64.2 0.0 89.6 0.0 91.8 0.0 84.7 0.0 76.8 0.0
Qwen2-VL-Instruct 7B 73.9 60.5 65.3 53.5 71.2 18.4 84.8 61.4 91.0 77.4 90.8 52.0 79.5 53.9

GRPO + Rf 7B 73.7 66.1 65.5 60.7 71.2 64.1 84.9 77.2 91.2 84.9 91.0 80.5 79.6 72.3
GRPO + Rf + Rcls 7B 73.5 65.9 65.6 59.0 71.3 63.0 84.8 78.1 91.0 85.7 90.8 82.1 79.5 72.3
ReFine-RFT (Ours) 7B 74.4 75.5 65.8 66.1 71.8 73.6 85.2 86.4 91.5 91.3 90.8 89.8 79.9 80.5

Table 3: Comparison with leading methods on six FGVR datasets in Reasoning-Answer setting
scaled in [0,100]. [RA=RSCA; RU=RSCU ; RO=RSCO ; D-120: Dog-120; B-200: Bird-200; A-
102: Aircraft-102; F-102: Flowers102; P-37: Pets-37; C-196: Cars-196; Qwen2: Qwen2-VL-Instruct;
GRPO: GRPO+Rf+Rcls]

Model D-120 B-200 A-102 F-102 P-37 C-196 Avg.
RA RU RO RA RU RO RA RU RO RA RU RO RA RU RO RA RU RO RA RU RO

Idefics2 22.4 28.1 35.3 20.3 32.1 40.8 8.4 20.3 18.6 22.6 31.8 30.3 24.1 29.4 27.6 25.8 23.8 29.9 20.6 27.6 30.4
Finedefics 47.4 9.2 14.7 39.1 8.9 10.3 53.3 9.1 8.6 68.7 9.6 13.7 67.1 10.3 15.6 67.1 9.9 13.4 57.1 9.5 12.7
Qwen2 60.8 60.7 79.3 53.6 56.7 75.9 45.6 35.6 47.1 74.0 65.7 76.9 79.9 71.7 85.8 75.8 38.0 52.6 65.0 54.7 69.6

GRPO 61.2 61.0 79.9 54.8 58.8 78.8 52.9 52.0 75.1 73.3 71.8 82.8 81.1 73.3 87.4 81.4 56.0 75.1 67.5 62.2 79.9
Ours 72.5 75.3 93.1 62.5 67.7 89.4 59.5 64.8 86.8 84.7 82.6 95.2 88.6 82.6 96.7 87.4 81.5 94.8 75.9 75.8 92.7

Evaluated MLLMs. We compare ReFine-RFT with recent MLLMs with comparable parameter size199

including Finedefic [14], Qwen2-VL-Instruct [43], Idefics2 [19], InternLM XComposer 2 [10], BLIP2200

Flan-T5-XL [21], Phi-3-Vision [1], InstructBLIP-Flan-T5-XL [9], MobileVLM v2 [7], LLaVA-Next-201

Mistral [22], and LLaVA 1.5 [23].202

Evaluation Metrics. As detailed in Sec. 4, we assess ReFine-RFT under two distinct evaluation203

regimes: Answer-only (aligned with prior works [14, 12]) and our novel Reasoning-Answer setting.204

We report conventional answer accuracy to quantify final prediction correctness (denoted as Answer-205

only setting), and RSCA, RSCU , RSCO for proposed Reasoning-Answer setting. In Answer-only ,206

we use both the Choice and CoT prompts from Tab. 1, while in Reasoning-Answer , only the CoT207

prompt is used.208

Implementation Details. We select Qwen2-VL-7B-Instruct [43] as the base model and use the209

LoRA technique [16] to fine-tune the model. We trained with 4 NVIDIA A6000 GPUs with 48G of210

memory. We use InternVL3-38B [6] as the teacher model. We use γ = 64 and α = 128 for LoRA,211

and a learning rate of 8e− 6 with 64 as the accumulated batch size. We set the number of generations212

G = 6 and β = 0 (i.e., no KL-divergence) for GRPO hyperparameters. Reward weights are set213

evenly as wfa = wcls = wcot = 1/3. We use GPT-4.1-mini [2] as a judge for Reasoning-Answer .214

All seeds are fixed across the training and evaluation procedures to ensure reproducibility and fairness.215

More details on the implementation can be found in the Appendix.216

5.2 Main Results217

Performance on the FGVR Benchmark. As shown in Tab. 2, ReFine-RFT achieves state-of-the-art218

performance on nearly all FGVR benchmarks in Answer-only setting, outperforming both CoT and219

Choice, and demonstrating superior reasoning ability beyond simple answer generation. Finedefics220

receives 0 scores in the CoT prompt because its outputs lack the structured reasoning format required221
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Table 4: Performance comparison between baseline methods and ReFine-RFT on MMStar, MMMU,
and TextVQA validation sets.

Model Size MMStarVal MMMUVal TextVQAVal

Idefics2 8B 49.0 44.9 73.3
Finedefics 8B 40.0 (↓ 9.0%) 33.7 (↓ 11.2%) 26.8 (↓ 46.5%)

Qwen2-VL-Instruct 7B 60.6 53.6 84.5
ReFine-RFT (Ours) 7B 59.9 (↓ 0.7%) 54.3 (↑ 0.7%) 84.2 (↓ 0.3%)

for answer extraction. To the best of our knowledge, this is the first time CoT-based reasoning222

outperforms simple answer-based methods in FGVR.223

We present the RSC performance of the Reasoning-Answer setting in Tab. 3. ReFine-RFT signif-224

icantly outperforms all baseline methods across all metrics, demonstrating strong capabilities in225

instruction following, reasoning, and fine-grained classification. We acknowledge that the compari-226

son with baselines may not be entirely fair, as our model has been specifically designed to enhance227

reasoning and instruction-following capabilities, whereas the baselines may not have received such228

targeted optimization. Nonetheless, compared with GRPO with classic format and classification229

rewards, ReFine-RFT outperforms in all metrics, demonstrating the effectiveness of the proposed230

Rfa and Rcot for FGVR. We encourage readers to consider the effectiveness and robustness of our231

proposed method: ReFine-RFT maintains a strong generalization performance across diverse tasks232

and domains, showing minimal performance degradation.233

Generalizability on General MLLM Benchmarks. We select some general Visual Question Answer-234

ing (VQA) benchmarks: MMStar [5], MMMU [47], and TextVQA [37], and use VLMEvalKit [11]235

to evaluate the generalizability of ReFine-RFT. The experimental results in Tab. 4 demonstrate236

the robust generalization capability of ReFine-RFT across diverse vision-language benchmarks.237

While Finedeifcs fine-tunes from Ideifc2 with notable performance drops in general VQA tasks,238

ReFine-RFT achieves competitive performance, closely matching the base model, despite being239

explicitly optimized for fine-grained visual recognition. These results underscore that our fine-tuning240

strategy enhances reasoning fidelity for FGVR without compromising the model’s inherent versatility,241

thereby validating its effectiveness in preserving and transferring knowledge across heterogeneous242

vision-language tasks.243

5.3 Ablation Studies244

Effects of Fine-tuning Method. We benchmark ReFine-RFT against Supervised Fine-Tuning245

(SFT) in the Answer-only setting (Tab. 5a), using identical training data. SFT exhibits performance246

degradation compared to zero-shot, especially using the CoT prompt. In contrast, ReFine-RFT247

achieves superior performance, underscoring its efficacy in harmonizing data-efficient training with248

enhanced classification performance while mitigating overfitting risks.249

Effects of Reward Functions. Tab. 5b highlights the impact of the proposed rewards Rfa and250

Rcot. Initial training with the format reward alone ensures structural compliance but lacks answer251

correctness. Incorporating Rcls does not improves classification accuracy in CoT, while replacing Rf252

with Rfa significantly improves by 4.3%. The addition of Rcot further enhances results (+3.9%),253

underscoring its critical role in guiding to the correct answers. This progression demonstrates that254

Rfa and Rcot are key to fostering task-aware understanding and promoting attention to semantically255

meaningful visual features during decision-making. More details are in the Appendix.256

Effects of Reward Weights. To investigate the role of each reward component, we perform an257

ablation on different weight configurations. As shown in Tab. 5c, the performance remains consistent258

across various weight combinations, with CoT scores ranging narrowly between 80.4 and 80.6. This259

indicates that our approach is relatively insensitive to the exact setting of reward weights and the260

three reward functions contribute complementarily to the final performance.261

Case Analysis. We visualize an example to demonstrate the reasoning capability of ReFine-RFT262

compared with other baseline methods in Fig. 5. While baseline methods overlook instructions263
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Table 5: Ablation studies of ReFine-RFT in Answer-only settings. We report average performance.
[CH.: Choice prompt; Zero: zero-shot performance of Qwen2-VL-7B-Instruct; Rfa: format reward
with attribute tags.]

(a) Effects of FT methods.

Method CH. CoT

Zero 79.5 53.9
SFT 78.0 47.6
Ours 79.9 80.5

(b) Effects of reward functions.

Rf Rfa Rcls Rcot CoT

✓ 72.3
✓ ✓ 72.3

✓ ✓ 76.6
✓ ✓ ✓ 80.5

(c) Effects of reward weights.

wfa wcls wcot CoT

0.33 0.33 0.33 80.5
0.20 0.50 0.30 80.6
0.20 0.30 0.50 80.4

<think>
The image shows a white puppy with a 
muscular build, a broad head, and a short 
snout, which are characteristic features 
of the American Bulldog breed. The 
puppy's coat is smooth and short, and it 
appears to be resting on a cushion with a 
stuffed toy, which is a common behavior 
for young dogs.
</think>
<attribute>
- Breed: American Bulldog
- Color: White
- Coat Type: Smooth and short
- Body Type: Muscular
- Head Shape: Broad
- Snout: Short
</attribute>
<answer>
B. American Bulldog
</answer>

<think>
…
Given these observations, the dog in 
the image most closely resembles a 
Boxer or an American Bulldog due to 
its broad head, muscular build, and 
floppy ears. However, without more 
specific breed markers, it's 
challenging to definitively identify the 
breed.

Since the image does not provide 
enough information to distinguish 
between the Boxer and American 
Bulldog, the most accurate choice is:
<answer>
C. Boxer
</answer>
</think>

Qwen-VLQwen2-VL-7B ReFine-RFT (Ours)

Accuracy: 0
Usefulness: 4
Obedience: 7

A. American Pit Bull 
Terrier is the 
description that best 
matches the image.

Finedefics2

Accuracy: 0 
Usefulness: 0
Obedience: 0

Accuracy: 10 
Usefulness: 9
Obedience: 10

<think> The dog is a 
puppy. It has a black 
collar around its neck. 
Its fur is white.

Idefics2

Accuracy: 0 
Usefulness: 2
Obedience: 3

Which of these dogs is 
shown in the image?

Choices:

A. American Pit Bull 
Terrier

B. American Bulldog

C. Boxer

D. Staffordshire Bull 
Terrier

<CoT Prompt>

Figure 5: Responses and RSC scores comparison. ReFine-RFT outperforms all baseline methods
w.r.t. reasoning quality, answer accuracy, and instruction-following. The completed responses and
GPT feedback are provided in the Appendix.

or yield weak reasoning, ReFine-RFT delivers stronger instruction alignment and more accurate264

reasoning, demonstrating greater reliability in FGVR. Specifically, ReFine-RFT produces fine-grained,265

attribute-based explanations grounded in clear visual evidence, such as coat texture, head shape, and266

snout structure, which directly support and justify the final classification. In contrast, baseline models267

show notable shortcomings: Qwen2-VL-7B tends to hallucinate attributes not present in the image,268

Idefics2 often generates irrelevant or nonsensical responses, and Finedefics2 ignores the instruction269

and misclassifies the breed entirely. These examples underscore the robustness of ReFine-RFT in270

reasoning and visual grounding. Additional qualitative comparisons and feedback from GPT are271

provided in the Appendix.272

6 Conclusion273

In this work, we identified key limitations of existing MLLMs in fine-grained visual recognition,274

particularly their susceptibility to overfitting, reasoning misalignment, and inadequate attention to275

discriminative attributes. To address these challenges, we introduce ReFine-RFT, a RFT framework276

that enhances reasoning fidelity and classification accuracy through a hybrid reward mechanism277

combining rule-based and MLLM-based incentives. Our method not only achieves state-of-the-278

art results across six FGVR benchmarks but also ensures robust generalization without requiring279

large-scale annotated datasets. Experimental results validate the effectiveness of our approach, with280

significant performance gains over existing methods while maintaining competitive performance on281

general vision-language tasks. This work underscores the importance of reasoning-answer alignment282

and external feedback in developing reliable MLLMs for mission-critical applications.283
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