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Abstract

Whole-body biometric recognition is a challenging multi-001
modal task that integrates various biometric modalities, in-002
cluding face, gait, and body. This integration is essential for003
overcoming the limitations of unimodal systems. Tradition-004
ally, whole-body recognition involves deploying different005
models to process multiple modalities, achieving the final006
outcome by score-fusion (e.g., weighted averaging similar-007
ity matrices from each model). However, these conventional008
methods may overlook the variations in score distributions009
of individual modalities, making it challenging to improve010
final performance. In this work, we present Quality-guided011
Mixture of score-fusion Experts (QME), a novel frame-012
work designed for improving whole-body biometric recog-013
nition performance through a learnable score-fusion strat-014
egy using a Mixture of Experts (MoE). We introduce a novel015
pseudo quality loss for quality estimation with a modality-016
specific Quality Estimator (QE), and a score triplet loss to017
improve the metric performance. Extensive experiments on018
multiple whole-body biometric datasets demonstrate the ef-019
fectiveness of our proposed approach, achieving state-of-020
the-art results across various metrics compared to baseline021
methods. Our method is effective for multi-modal and multi-022
model, addressing key challenges such as model misalign-023
ment in the similarity score domain and variability in data024
quality. Code will be publicly released upon publication.025

1. Introduction026

Whole-body biometrics integrates diverse recognition027
tasks such as face recognition (FR) [9, 22], person028
re-identification (ReID) [15, 32], and gait recognition029
(GR) [57, 59] to overcome unimodal limitations. Whole-030
body biometrics benefits from the combined strengths of031
multiple modalities. This multimodal synergy ensures ro-032
bust performance in non-ideal conditions (low-light, oc-033
clusion, and missing traits), making it indispensable for034
security-critical domains like surveillance and law enforce-035
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Figure 1. Illustration of score distribution alignment in multi-
modal human recognition. Different models and modalities (e.g.,
face, gait, and body) produce distinct similarity score distributions.
Conventional score-fusion methods struggle with optimal align-
ment and assigning importance weights of each modality, poten-
tially degrading performance.

ment. Effective fusion is pivotal to whole-body recognition. 036
Current approaches include decision-level fusion, feature- 037
level fusion, and score-level fusion [46]. In decision-level 038
fusion, each modality first makes an identity decision based 039
on its extracted features. The individual decisions are then 040
combined based on either decision scores or ranks. This 041
fusion scheme does not incorporate any correlation among 042
the modalities. Feature-level fusion combines extracted fea- 043
tures from different modalities to obtain a single representa- 044
tion. However, this approach is often hindered by inconsis- 045
tencies across modalities, as different biometric traits may 046
not necessarily complement each other effectively. Most 047
importantly, this kind of method requires suitable paired 048
multi-modal datasets. Many available datasets such as Web- 049
Face42M [60] for face recognition do not contain whole- 050
body data, while other datasets like PRCC [55], LTCC [38], 051
and CCPG [29] widely used in person ReID and gait recog- 052
nition, are limited by dataset size, the masking of faces, or 053
insufficient number of subjects for generalizable training. 054

Compared to feature-level fusion, score-level fusion in- 055
tegrates the similarity scores or feature (embedding) dis- 056
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tances generated by individual models. Score-level fu-057
sion offers computational efficiency and modular flexibility058
compared to feature-level fusion, enabling seamless inte-059
gration of heterogeneous modalities while preserving indi-060
vidual model optimizations. However, conventional score-061
fusion techniques are limited by their inability to fully uti-062
lize the different distributions of match (genuine) and non-063
match (impostor) scores produced by each model, as shown064
in Fig. 1. Additionally, finding the optimal weight for each065
model in the fusion process is challenging, even using grid066
search [30], leading to suboptimal performance.067

To address these challenges, we propose a Quality Es-068
timator (QE) and pseudo-quality loss that leverages pre-069
trained models to generate pseudo-quality labels via rank-070
ing performance, eliminating laborious manual annotation.071
We develop a Mixture of Score-Fusion Experts method that072
each expert learns distinct fusion strategies (e.g., one prior-073
itizes face-gait synergy, and another handles occlusion sce-074
narios). Experts’ contributions are dynamically weighted075
by QE predictions, ensuring robustness to sensor noise076
and missing modalities. To improve metric learning per-077
formance, we present score triplet loss that enforces mar-078
gin separation between match/non-match scores while sup-079
pressing non-match magnitudes, directly aligning with met-080
rics like verification and open-search. This approach im-081
proves score-level alignment between modalities without082
the need for retraining biometric backbones and tremendous083
training data. Our contributions are summarized as follows:084

• We propose a Quality Estimator (QE) that employs085
pseudo quality loss—derived from pretrained models and086
ranking performance—to assess modality quality without087
the need for human-labeled data.088

• We introduce QME, a multi-modal biometric recognition089
framework that integrates a learnable, modality-specific090
score-fusion method. QME dynamically combines di-091
verse fusion strategies, adapting to sensor noise, occlu-092
sions, and missing modalities.093

• We develop a novel score triplet loss for metric learn-094
ing that enforces a clear margin between match and non-095
match scores, directly optimizing key performance met-096
rics such as verification accuracy and open-search effec-097
tiveness.098

• Extensive experiments on multiple whole-body biometric099
datasets validate the superior performance and robustness100
of our approach compared to state-of-the-art score-fusion101
methods.102

2. Related Work103

2.1. Score-fusion104

Score-level fusion integrates similarity scores from multiple105
modalities to optimize recognition decisions [46]. Tradi-106
tional score-fusion methods include Z-score and min-max107

normalization. [34, 36, 37, 51] introduce likelihood ratio 108
based score fusion. Ross et al. propose mean, max, or min 109
score-fusion, where the final score is determined by aver- 110
aging, highest, or lowest score [21, 40, 58]. The Reduc- 111
tion of High-scores Effect (RHE) normalization developed 112
by [17] builds upon the min-max normalization approach by 113
incorporating genuine pair scores. Recent literature catego- 114
rizes score fusion into two paradigms: fixed-rule methods, 115
employing predefined heuristics (e.g., predefined weights), 116
and trained-rule methods, utilizing learned parameters op- 117
timized through training (e.g., SVM) [5, 35, 49]. Score- 118
fusion methods offer several advantages: 1) they are robust 119
to missing modality inputs, and 2) they simplify alignment, 120
as the domain gap between modalities becomes smaller 121
compared to feature-space alignment. However, challenges 122
remain in determining the optimal alignment and weight- 123
ing for each model and identifying the most effective fusion 124
strategy. We aim to explore a better way of assessing the 125
contribution of each modality and develop a more general- 126
izable score-fusion method. 127

2.2. Biometric Quality Assessment 128

Biometric quality assessment is the process of evaluating 129
the quality of biometric data (facial images and finger- 130
prints), which directly impacts the performance and accu- 131
racy of biometric recognition systems [12]. [3, 10, 25] focus 132
on fingerprint and iris, while [2, 4, 19, 22, 23, 33, 44, 50] 133
focus on quality assessment using learning-based methods 134
in face recognition. However, many of these approaches 135
require specialized training paradigms that are incompati- 136
ble with pretrained models. In this work, we introduce a 137
method to train a general QE by distilling knowledge from 138
the pretrained model, providing a versatile approach to bio- 139
metric quality assessment. 140

2.3. Whole-Body Biometric Recognition 141

As illustrated in Fig. 2, whole-body biometric systems in- 142
tegrate feature detectors, encoders, and fusion modules to 143
unify multi-modal traits (e.g., face, gait) for robust identifi- 144
cation. Key to their design is effectively leveraging comple- 145
mentary strengths while mitigating individual weaknesses: 146
facial recognition excels with high-resolution frontal im- 147
ages but degrades under non-ideal conditions (e.g., long- 148
distance, off-angle views), while gait and ReID models 149
contend with clothing/posture variations. [31]. Recent ad- 150
vances [6, 16, 20, 39, 48, 54] emphasize multi-attribute fu- 151
sion, yet predominantly target homogeneous sensor data, 152
neglecting the heterogeneous nature of whole-body modali- 153
ties. Efforts to incorporate facial features into ReID [13, 27, 154
28, 31] often prioritize modular additions over-optimizing 155
fusion efficacy. The challenge of fusion methods for com- 156
prehensive whole-body biometric recognition remains an 157
open problem requiring in-depth exploration. 158
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Figure 2. General framework for whole-body biometric recognition. Input video sequence q is processed by a detector to extract different
modality queries, which are fed into multiple embedding models. Each model generates similarity scores by comparing the extracted
features with gallery templates (T unique person). Our work focuses on score-fusion algorithms that produce the final decision based on
input score matrices and modality weights (optional).

3. Methodology159

In this section, we introduce the proposed QME method,160
which leverages quality assessment and learnable score-161
fusion with MoE across multiple modalities. Our approach162
is specifically designed to tackle challenges related to model163
misalignment in score-level distributions and varying data164
quality in whole-body biometric recognition.165

Overview. In biometric evaluation, there are typically mul-166
tiple queries (or probes) and a fixed set of gallery subjects.167
A query refers to a sample sequence that needs to be iden-168
tified or verified, while the gallery consists of previously169
enrolled or known subjects in the system. Each gallery170
subject has multiple video sequences (or images) to extract171
gallery templates. Given a model Mn in the embedding172
model set {M1,M2, . . . ,MN} with a query and gallery173
templates where N is the number of models, we compute174
the query features qn ∈ RL×dn and gallery template fea-175
tures Gn ∈ RT×dn of all gallery subjects, where L repre-176
sents the sequence length of the query (number of images)177
and T is the number of gallery templates (i.e., number of178
videos/images), and dn is the feature dimension of Mn. We179
further compute the average of qn to obtain a feature vector180
in R1×dn , then compute the similarity between Gn to get181
the query score matrix Sn ∈ R1×T , representing the sim-182
ilarity score of the query with each gallery template. Our183
training process involves two-stage training: (1) training184
QE, and (2) freezing QE while training the learnable score-185
fusion model.186

3.1. Quality Estimator (QE)187

The goal of the QE is to predict the input quality of a188
given modality. We hypothesize that if the input qual-189
ity for a particular modality is poor, the system should190

shift focus to other modalities to enhance overall perfor- 191
mance. As illustrated in Fig. 3(a), given a query feature 192
set Qn = {q1n, q2n, . . . , qBn } ∈ RB×dn where B is the 193
training batch size, we collect the intermediate features 194
In ∈ RB×L×U×Pn×dn from the model Mn, where U is the 195
number of blocks, Pn is the patch size of Mn. In captures 196
various levels of semantic information from the model. We 197
follow [23] to extract intermediate features from the back- 198
bone and compute the mean and the standard deviation, re- 199
ducing In to a representation in RB×L×2dn . This repre- 200
sentation is then fed into an encoder to predict query-level 201
quality weight Wn ∈ RB×1 produced by sigmoid function. 202

Pseudo Quality Loss. The challenge of training QE is the 203
lack of human-labeled training set quality. Empirically, we 204
do not have the quality label of the query images. However, 205
we can know the ranking result by sorting the similarities 206
between the query feature and training gallery features. A 207
higher ranking result indicates the input images are close to 208
their gallery center. We believe that if the ranking result of 209
the input is better, the quality of the input will be higher. 210
Hence, we propose a pseudo quality loss Lrank using the 211
ranking result of the input for the pretrained model Mn: 212

Lrank =
∑
i∈L

MSELoss

(
wi,ReLU(

δ − ri
δ − 1

)

)
. (1) 213

ri is the ranking result of the query feature qi, wi is the 214
predicted quality weight, and δ is a hyperparameter to ad- 215
just the sensitivity of the ranking threshold. In order to get 216
ri, we compute the similarity matrix between qi and Gn. 217
Lower δ will push the predicted ri to 0 if the ranking re- 218
sult is out of δ. Conversely, higher δ will cause the QE 219
to predict a value closer to 1 as it has a higher toleration 220
about the ranking result. Our proposed QE offers several 221
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Figure 3. The architecture of the proposed QME framework. It includes a Norm layer and an MoE layer to process concatenated score
matrices S from the model set M1,M2, . . . ,MN . The MoE layer contains experts ε1, ε2, . . . , εZ to individually encode the fused score
matrices. A quality estimator (QE) uses the intermediate feature In from the backbone block B1, B2, . . . , Bb to generate weights Wn,
which control p1, p2, . . . , pZ for a weighted sum, producing the final fused score matrix S′.

benefits: (1) It can generalize across all pretrained mod-222
els (not only FR models) by learning from these models223
and identifying characteristics of challenging samples, and224
(2) it can be trained on any dataset, whether in-domain or225
out-of-domain. While pretrained models may exhibit biases226
toward their training data which can hinder generalization,227
challenging samples may originate from either in-domain228
or out-of-domain data.229

3.2. Mixture of Score-fusion Experts230

The concept of MoE [11, 42] comes from the NLP com-231
munity, where they use MoE layers to replace feed-forward232
network (FFN) layers in the transformer blocks. With the233
sparsity of experts and the router network, each expert can234
focus on handling different tokens. In addition, some spe-235
cial loss functions are designed to control the behavior of236
the router [7, 26, 42, 43, 61].237

Inspired by this, we design an MoE layer (shown in238
Fig. 3(b)) with multiple score-fusion experts, controlled by239
Nr that learns to perform score-fusion based on quality240
weights. Unlike the traditional MoE setup, we use the pro-241
posed QE to predict the quality weight of the query to im-242
ply the reliability of the input modality, guiding the selec-243
tion process. For a expert ϵz from expert set {ϵ1, ..., ϵZ}244
where Z is the number of experts, they receive score matrix245
S ∈ RT×N from all modalities and predict a fused score246
matrix S′

z ∈ RT×1. Given Wn as the modality-specific247
quality weight and εn controlled by pn = Wn, we aim for248
expert εn to prioritize the selected modality when Wn is249
high. Conversely, when Wn is low, another expert, εj (con-250

trolled by 1− pn), shifts focus to other modalities. This ap- 251
proach ensures that higher-quality modalities have a greater 252
influence on the output, while lower-quality ones contribute 253
less, optimizing overall performance. Further details are 254
provided in Sec. 4.4. 255

3.3. Quality-Guided Mixture of Score-fusion Ex- 256
perts (QME) 257

Based on Sec. 3.1 and 3.2, we further introduce QME. As 258
illustrated on the left side of Fig. 3, for a query feature set 259
Qn = {q1n, q2n, . . . , qBn } ∈ RB×dn processed by model 260
set {M1,M2, . . . ,MN}, we generate the input score ma- 261
trix S = {S1,S2, . . . ,SN} ∈ RB×T×N , respectively. N is 262
the number of models. For models employing different dis- 263
tance metrics, such as cosine similarity and Euclidean dis- 264
tance, we convert Euclidean distances into similarity scores 265
using: 266

1

1 + Euc(q, g)
, (2) 267

where Euc(q, g) represents Euclidean distance between 268
feature q and g. This transformation remaps Euclidean dis- 269
tances to align with the range of Cosine Similarity, where 270
larger values indicate higher similarity. We then normalize 271
S using a BatchNorm layer. After normalization, S is fed 272
into the MoE layer which contains a router network Nr and 273
multiple score-fusion experts {ε1, ε2, . . . , εZ}. Each expert 274
is specialized to handle specific input conditions (i.e., sim- 275
ilarity values), with the router selecting the most suitable 276
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expert based on quality assessment. Nr takes Wn as the in-277
put and generates the weight of assigning input to all experts278
{p1, p2, . . . , pZ} where pZ is the weight of contribution of279
expert εZ . The final fused score matrix S ′ is computed as a280
weighted sum of the outputs from all experts:281

S ′ =
∑
z∈Z

pzSz, (3)282

where Sz is the output score matrix from εz . By using qual-283
ity weight to modulate S ′, each expert learns how the con-284
tributions of different modalities’ scores to S ′ should be ad-285
justed in response to changes in their quality levels.286

Score Triplet Loss. The triplet loss [41] optimizes relative287
distances between samples:288

Ltri = ReLU(d(a, p)− d(a, n) +m), (4)289

where d(a, p) is the distance between anchor a and posi-290
tive sample p, d(a, n) is the distance between anchor a and291
negative sample n, and m enforces a margin. The triplet292
loss focuses on maintaining a boundary between positive293
and negative pairs, but it does not effectively constrain the294
value of non-match scores. The verification and open-set295
search rely on a threshold τ . For example, TAR@τ%FAR296
measures the acceptance rate of the match samples that only297
τ% of non-match scores can be accepted as matches. To298
optimize these metrics, we introduce the score triplet loss299
Lscore :300

Lscore = ReLU(S ′
nm) + ReLU(m− S ′

mat), (5)301

where S ′
nm is the non-match scores of S ′, S ′

mat is the match302
score of S ′. Unlike the original triplet loss, this formulation303
provides more constraints:304
• Directly suppresses non-match scores (ReLU(S ′

nm)): en-305
suring they remain below decision thresholds.306

• Enforces a margin on match scores (ReLU(m − S ′
mat)):307

guaranteeing they exceed non-matches by m.308
By jointly optimizing score magnitudes and relative mar-309
gins, the loss aligns training objectives with evaluation met-310
rics (e.g., TAR@FAR), reducing false acceptances while311
maintaining discriminative power.312

4. Experiments313

To rigorously validate our method’s robustness, we in-314
tentionally leverage a diverse set of embedding models315
spanning multiple modalities, including face recognition316
model [22, 24], gait recognition and person ReID mod-317
els [15, 32, 53, 56, 57] This cross-modal diversity system-318
atically avoids overfitting to any single modality’s biases,319
demonstrating that our framework generalizes across het-320
erogeneous feature spaces. We stress-test our method’s abil-321
ity to harmonize divergent embeddings—a critical require-322
ment for real-world deployment where the distribution of323
the test set is unpredictable.324

Dataset Type #Subjects (Train/Test) #Query #Gallery

CCVID Video 75 / 151 834 1074
MEVID Video 104 / 54 316 1438
LTCC Image 77 / 75 493 7050
BRIAR Video 775 / 424 10371 12264

Table 1. Statistics of the evaluation set of human recognition
benchmarks. For the LTCC, the numbers indicate the number of
images, while others are the number of sequences.

Baseline Setup. We benchmark our method against tradi- 325
tional and contemporary fusion strategies spanning three 326
categories: (1) Statistical Fusion: Min/Max score fu- 327
sion [21], Z-score normalization and min-max normaliza- 328
tion [47]; (2) Representation Harmonization: Rank-based 329
histogram equalization (RHE) [17]; and (3) Model-driven 330
learnable score-fusion: Farsight [31], SVM-based (Support 331
Vector Machine) score fusion (BSSF) [49], Weighted-sum 332
with learnable coefficients [35] and AsymA-O1’s asymmet- 333
ric aggregation [18]. This comprehensive comparison val- 334
idates our method’s superiority in balancing discriminative 335
feature preservation. 336

Evaluation Metrics. We adopt standard person ReID met- 337
rics like Cumulative Matching Curve (CMC) at rank-1 and 338
mean Average Precision (mAP) [8, 14, 15, 32, 38, 45, 52, 339
53, 56, 57, 59]. To holistically assess whole-body biometric 340
systems, we extend evaluation to verification (TAR@FAR: 341
True Acceptance Rate at a False Acceptance Rate) and 342
open-set search (FNIR@FPIR: False Non-Identity Rate at 343
a False Positive Identification Rate). 344
• TAR@FAR directly aligns with real-world security 345

needs, measuring how reliably the system accepts gen- 346
uine matches while rejecting imposters under controlled 347
error tolerance. 348

• FNIR@FPIR addresses open-set scenarios (common in 349
surveillance), where queries may belong to unknown in- 350
dividuals, ensuring robust rejection of “unknowns” with- 351
out compromising true match detection. 352

These metrics collectively ensure methods balance accuracy 353
(CMC/mAP), security (TAR@FAR), and generalizability 354
(FNIR@FPIR), reflecting real-world deployment require- 355
ments with comprehensive performance evaluation. 356

Datasets. We evaluate our method on diverse datasets 357
spanning static images, video sequences, multi-view cap- 358
tures, and cross-modal biometric data (shown in Tab. 1) to 359
rigorously assess generalization across varying resolutions, 360
viewpoints, and temporal dynamics. This multi-faceted 361
benchmarking ensures robustness to real-world challenges 362
such as occlusion, motion blur, and sensor heterogeneity, 363
validating practical applicability in unconstrained environ- 364
ments. More details are provided in the Supplementary. 365
Evaluation Protocol. For CCVID, MEVID, and LTCC, 366
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we evaluate under general conditions, as the focus of score-367
fusion is not only on the Clothes-Changing (CC) scenario.368
For BRIAR, we follow Farsight [32] and conduct two test369
settings: Face-Included Treatment, where facial images are370
clearly visible, and Face-Restricted Treatment, where facial371
images are in side-view or captured from long distances.372

4.1. Implementation Details373

In our experiments, we set N = 2, 3, incorporating mul-374
tiple modalities (face, gait, and body) as inputs for a375
comprehensive evaluation. We adopt the methodology of376
CAFace [23] to precompute gallery features for all train-377
ing subjects across multiple biometric modalities. Specif-378
ically, pre-trained biometric backbones process each video379
sequence or image in the training dataset before training be-380
gins, and use average pooling to generate modality-specific381
gallery features. For open-set evaluation, we follow Su et382
al.’s work [48] to construct 10 random subsets of gallery383
subjects (covering 20% of the subjects in the test set) and384
report the median and standard deviation values. During385
training, we randomly sample L = 8 frames from each386
tracklet video and aggregate their features, either through387
averaging or using specific aggregation methods from the388
models, to produce query-level features. We set the number389
of experts to Z = 2, with p1 = Wf , and p2 = 1 − p1.390
δ in Eq. 1 is set to 3 for CCVID, MEVID, and LTCC, and391
20 for BRIAR. ε1, ε2, . . . , εz represents 3-layer MLPs. The392
parameter m in Eq. 5 is set to 3. We use Adam optimizer393
with a learning rate of 5e−5 and a weight decay of 1e−2.394
We apply a cosine annealing warm-up strategy to adjust the395
learning rate. More details are provided in Supplementary.396

4.2. Experimental Results397

Tab. 2, 3, and 4 show the performance of our method on398
CCVID, MEVID, LTCC, and BRIAR compared with other399
score-fusion methods. Note that Z-score and min-max are400
normalization methods; after normalization, we average the401
scores for a more balanced comparison. To ensure a fair402
comparison with GEFF [1], we replace the FR model in403
GEFF with AdaFace and apply Gallery Enrichment (GE) to404
our method. That is because GE adds selected query sam-405
ples into the gallery, so the test set has changed. Note that406
GEFF requires a hyperparameter α to combine the score407
matrices from the ReID model and the FR model, which408
cannot be extended to the 3-modality setting.409

In CCVID, the FR model performs particularly well, as410
most body images are front-view and contain well-captured411
faces. In MEVID, LTCC, and BRIAR (Face-Restricted412
Treatment), the performance of the FR model is not com-413
parable to that of the ReID models. This is mainly due414
to (1) the presence of multiple views and varying distances415
in captured images, which often results in low-quality im-416
ages, and (2) label noise and detection errors. However,417

Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [22] ♦ 94.0 87.9 75.7 13.0± 3.5

CAL [15] ♠ 81.4 74.7 66.3 52.8± 13.3
BigGait∗ [57] ♣ 76.7 61.0 49.7 71.1± 6.1

GEFF† [1]
♦ ♠ 89.4 87.5 84.0 13.3± 1.3

Ours 93.3 89.5 86.9 11.4± 1.5

Min-Fusion [21]

♦ ♠ ♣

87.1 79.2 62.4 48.5± 8.7
Max-Fusion [21] 89.9 89.3 73.4 23.0± 10.1

Z-score [47] 92.2 90.6 73.9 15.1± 1.5
Min-max [47] 91.8 90.9 73.9 15.4± 2.5

RHE [17] 91.7 90.2 73.1 16.6± 2.5
Weigthed-sum [35] 91.7 90.6 73.6 15.4± 1.8

Asym-AO1 [18] 92.3 90.0 74.0 15.9± 1.7
BSSF [49] 91.8 91.1 73.9 14.1± 1.3

Farsight [31] 92.0 91.2 73.9 13.9± 1.1
Ours (AdaFace-QE) 92.6 91.6 75.0 13.3± 1.2

Ours (CAL-QE) 94.1 90.8 76.2 12.3± 1.4

(a) Performance on CCVID Dataset.

Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [22] ♦ 25.0 8.1 5.4 98.8± 1.2

CAL [15] ♠ 52.5 27.1 34.7 67.8± 7.3
AGRL [53] ■ 51.9 25.5 30.7 69.4± 8.9

GEFF† [1]
♦ ♠ 32.9 18.8 19.9 78.7± 8.1

Ours 33.5 19.9 26.2 72.5± 10.3

Min-Fusion [21]

♦ ♠ ■

46.8 21.2 28.0 70.4± 8.0
Max-Fusion [21] 33.2 14.9 8.3 97.4± 1.6

Z-score [47] 54.1 27.4 30.7 66.5± 7.0
Min-max [47] 52.8 24.7 25.0 71.3± 6.1

RHE [17] 52.8 24.8 25.3 71.2± 6.2
Weigthed-sum [35] 54.1 27.3 30.3 66.3± 7.0

Asym-AO1 [18] 52.5 22.9 23.6 71.7± 5.8
BSSF [49] 53.5 27.4 30.5 65.9± 7.2

Farsight [32] 53.8 25.4 26.6 69.8± 6.4
Ours (AdaFace-QE) 55.7 28.2 32.9 64.6± 8.2

Ours (CAL-QE) 55.4 27.9 32.5 64.3± 8.7

(b) Performance on MEVID Dataset.

Table 2. Our performance on CCVID and MEVID datasets in the
general setting. Bold: best performance. Underline: second best
performance. Comb.: model combination. ∗: zero-shot perfor-
mance. †: reproduced using AdaFace [22] as the face module.
♦: AdaFace for face modality. ♣: BigGait for gait modality. ♠:
CAL of body modality. ■: AGRL for body modality. [Keys:
TAR=TAR@0.1%FAR. FNIR= FNIR@1%FPIR.].

the performance of score fusion surpasses that of individ- 418
ual models and modalities, suggesting that each model con- 419
tributes complementary information. Our method effec- 420
tively harnesses additional useful information in complex 421
scenarios, leading to an even greater performance boost 422
in MEVID and LTCC than in CCVID (+1.6% on Rank1, 423
+0.8% on mAP, +2.2% on TAR@1%FAR and +1.3% on 424
FNIR@1%FPIR on MEVID). While other score-fusion ap- 425
proaches do not consistently perform well across all metrics 426
or need to manually select hyperparameters, our method 427
achieves higher performance across the board, with no- 428
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Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [22] ♦ 18.5 5.9 2.4 99.8± 0.2

CAL [15] ♠ 74.4 40.6 36.7 59.7± 7.3
AIM [56] ■ 74.8 40.9 37.0 66.2± 9.2

Min-Fusion [21]

♦ ♠ ■

38.1 13.5 12.4 81.9± 6.0
Max-Fusion [21] 62.5 33.3 16.8 94.8± 4.7

Z-score [47] 73.0 37.5 30.4 68.7± 9.2
Min-max [47] 73.2 38.1 31.9 75.1± 9.2

RHE [17] 70.4 34.2 21.5 78.0± 10.0
Weigthed-sum [35] 73.2 37.8 31.3 72.4± 8.6

Asym-AO1 [18] 71.2 32.9 19.1 76.3± 8.9
BSSF [49] 73.5 39.1 34.2 68.9± 8.5

Farsight [31] 73.2 37.8 31.3 72.4± 8.6
Ours 73.8 39.6 35.0 64.3± 8.0

Table 3. Our performance on LTCC. Bold: best performance.
Underline: second best performance. Comb.: model combina-
tion. ∗: zero-shot performance. ♦: AdaFace for face modality.
♠: CAL of body modality. ■: AIM for body modality. [Keys:
TAR=TAR@0.1%FAR. FNIR= FNIR@1%FPIR.]

table improvements in both closed-set and open-set eval-429
uations, especially in MEVID and BRIAR. Additionally,430
our approach is generalizable, adapting effectively to var-431
ious modality combinations, model combinations, and sim-432
ilarity metrics, irrespective of whether the backbones are433
fine-tuned on the target dataset or not. More experimental434
results can be found in the Supplementary.435

4.3. Analysis436

Our experiments reveal two critical insights: First, while437
existing methods enhance performance on constrained438
datasets with high-quality facial imagery, they falter un-439
der challenging in-the-wild conditions characterized by440
non-frontal angles and variable capture quality. Second,441
our framework demonstrates superior robustness in these442
complex scenarios, achieving markedly larger performance443
gains compared to controlled environments. This di-444
vergence stems from fundamental dataset characteristics:445
constrained benchmarks predominantly feature optimal fa-446
cial captures where conventional face recognition excels,447
whereas unconstrained datasets reflect real-world imperfec-448
tions that degrade reliability. The limitations of prior ap-449
proaches arise from their dependence on high-quality fa-450
cial predictions, which introduce noise when inputs diverge451
from ideal conditions. Conversely, our method dynamically452
adapts to input quality variations, synthesizing multi-modal453
cues to maintain accuracy without additional hardware or454
data requirements. This capability underscores its practical455
viability in deployment scenarios where sensor fidelity and456
environmental conditions are unpredictable.457

Method Comb.
Face Incl. Trt. Face Restr. Trt.

TAR↑ R20↑ FNIR↓ TAR↑ R20↑ FNIR↓
KPRPE [24] ♦ 66.5 80.5 54.8 31.5 44.5 81.3
BigGait [57] ♣ 66.3 93.1 72.7 61.0 90.4 76.3

CLIP3DReID [32] ♠ 55.8 83.5 80.1 47.9 79.3 83.4

Min-Fusion [21]

♦ ♣ ♠

70.9 86.5 55.6 39.1 58.0 77.1
Max-Fusion [21] 68.7 93.0 72.5 61.6 90.6 76.1

Z-score [47] 78.5 92.3 43.8 51.1 83.9 72.2
Min-max [47] 82.4 96.0 46.9 61.4 91.5 68.5

RHE [17] 82.8 95.7 44.2 64.9 90.8 67.1
Weigthed-sum [35] 84.0 95.4 43.2 62.6 90.2 68.1

Asym-AO1 [18] 83.4 95.1 42.4 58.5 90.0 66.9
Farsight [31] 82.4 95.8 46.1 65.7 91.0 68.2

Ours 84.5 96.0 41.2 67.9 90.6 64.1

Table 4. Our performance on BRIAR Evaluation Protocol 5.0.0.
Bold: best performance. Underline: second best performance.
Comb.: model combination. Face Incl. Trt.: Face-Included Treat-
ment. Face Restr. Trt.: Face-Restricted Treatment. ♦: AdaFace
for face modality. ♣: BigGait for gait modality. ♠: CLIP3DReID
of body modality. [Keys: TAR=TAR@0.1%FAR. R20= Rank20.
FNIR= FNIR@1%FPIR.]

Lscore QE Z Rank1↑ mAP↑ TAR↑ FNIR↓
✗ ✗ 1 49.4 21.6 23.3 84.0
✓ ✗ 1 53.8 24.5 25.3 70.4
✗ ✗ 2 54.1 25.5 30.8 65.4
✓ ✗ 2 55.1 27.0 31.3 66.5
✓ ✓ 2 55.7 28.2 32.9 64.6

Table 5. Ablation study results on MEVID. In the absence of
the QE setting (i.e., QE ✗), we average the outputs from experts.
[Keys: TAR=TAR@1%FAR. FNIR=FNIR@1%FPIR.]

4.4. Ablation Studies 458

Effects of Lscore , QE, and Z. Tab. 5 illustrates the ef- 459
fects of Lscore , QE, and the number of score-fusion experts 460
Z. Compared to the Ltri , Lscore yields significant perfor- 461
mance improvements across all metrics, regardless of z, un- 462
derscoring the importance of extra boundary for non-match 463
scores. We further observe that increasing the number of 464
experts Z leads to incremental performance improvements. 465
This trend suggests that the fusion of multiple experts en- 466
riches the model’s decision-making process by capturing 467
diverse perspectives, making it better equipped to handle 468
complex, multi-modal data scenarios. Lastly, the inclu- 469
sion of QE guidance results in even further performance en- 470
hancements. QE allows for quality-based weighting, which 471
enables each expert to focus on the most relevant features 472
for a given input. This reflective weighting strategy al- 473
lows the experts to learn more effectively by prioritizing 474
high-quality information, ultimately enhancing the overall 475
robustness and accuracy of the model. 476
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Expert Face Incl. Trt. Face Restr. Trt.

TAR↑ R20↑ FNIR↓ TAR↓ R20↑ FNIR↓
ε1 83.6 95.5 41.7 62.0 90.6 66.7
ε2 81.8 95.5 46.6 65.0 90.6 68.4

Ours (ε1 + ε2) 84.5 95.7 41.2 67.9 90.6 64.1

Table 6. Effects of the mixture of score-fusion experts on BRIAR.
ε1 has a better performance in Face Incl. Trt., while ε2 ex-
perts in Face Restr. Trt.. [Keys: Face Incl. Trt.= Face In-
cluded Treatment; Face Restr. Trt.= Face Restricted Treatment;
TAR=TAR@0.1%FAR; R20=Rank20; FNIR=FNIR@1%FPIR]

Effects of Mixture of Score-fusion Experts. We analyze477
the effects of the mixture of score-fusion experts compared478
to single-expert performance, as shown in Tab. 6. We con-479
duct the ablation study on BRIAR as Face Included Treat-480
ment and Face Restricted Treatment settings are closely re-481
lated to face quality weights. ε1 achieves better results482
in TAR@0.1%FAR for Face Included Treatment and in483
FNIR@1%FPIR across all settings, while ε2 performs bet-484
ter in TAR@0.1%FAR for Face Restricted Treatment. This485
is because the FR model excels in identifying true positive486
pairs, resulting in lower FNIR@1%FPIR. Guided by p1, ε1487
learns to prioritize the FR model, while ε2 focuses on ReID488
and GR models. Fusing both experts’ scores improves over-489
all performance, demonstrating that using multiple experts490
enhances final performance and allows each expert to cap-491
ture distinct information.492

Effects of QE for Other Modalities. We validate the gen-493
eralizability of the proposed QE with the performance of494
QME using the QE of CAL as the input to Nr in Tab. 2 (de-495
noted as CAL-QE). When using QE from CAL, the perfor-496
mance is comparable to that of QE from AdaFace, with both497
outperforming baseline methods. Visualization of CAL498
quality weight can be found in the Supplementary.499

4.5. Visualization500

Score Distribution. Fig. 4 visualizes the distribution501
of non-match scores, match scores, and the threshold502
FAR@1% for both Z-score and our method on CCVID.503
To ensure a balanced comparison between the two distribu-504
tions, we randomly sample an equal number of non-match505
and match scores. Compared to the Z-score score-fusion,506
our approach increases match scores while keeping non-507
match scores within the same range. This adjustment val-508
idates the effects of score triplet loss. This improved the509
model’s ability to distinguish between matches and non-510
matches.511

Quality Weights. Fig. 5 visualizes the distribution of pre-512
dicted quality weights for facial images on the CCVID and513
MEVID test sets. Note that these weights represent video-514
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Figure 4. Score distributions of the CCVID test set. [Keys:
nm mean=mean value of non-match scores; mat mean= mean
value of match scores.]

Figure 5. The distribution of AdaFace quality weights for the
CCVID and MEVID datasets, illustrated with examples showcas-
ing a range of quality weights.

level quality weights, obtained by averaging the quality 515
weights of each frame in the video sequence. CCVID has a 516
higher proportion of high-quality weights, as most images 517
are captured from a front view. In contrast, MEVID shows 518
more variability in quality weights due to detection noise 519
and varying clarity. The visualization indicates that our 520
method effectively estimates image quality. This guides the 521
score-fusion experts to prioritize the most reliable modality 522
based on quality. 523

5. Conclusion 524

We propose QME (Quality-guided Mixture of Experts), 525
a framework for robust whole-body biometric recognition 526
that dynamically fuses modality-specific experts through 527
quality-aware weighting. The proposed score triplet loss 528
enforces the margin between match and non-match scores. 529
Experiments across diverse benchmarks demonstrate the su- 530
perior performance of our method. QME serves as a general 531
framework for multi-modal score fusion—applicable to any 532
system combining heterogeneous models. 533
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