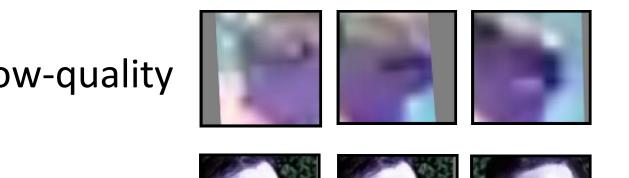
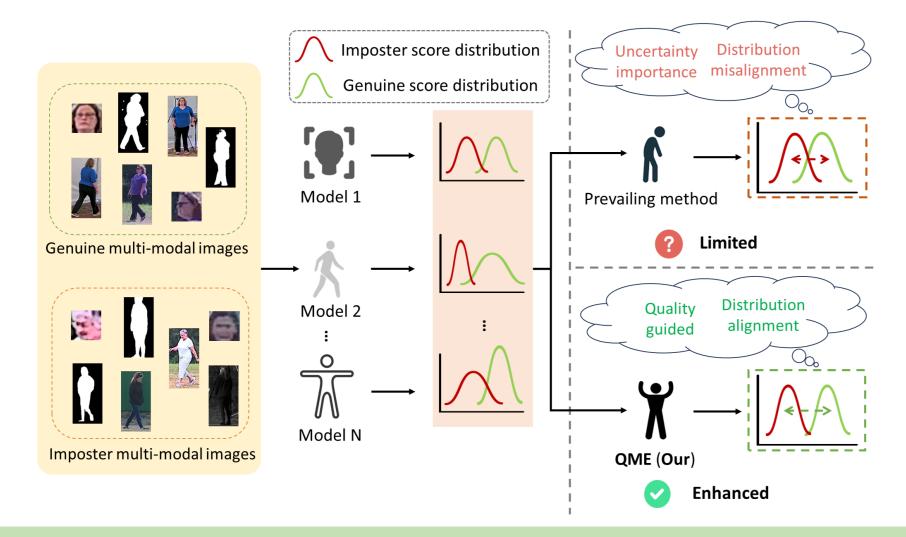


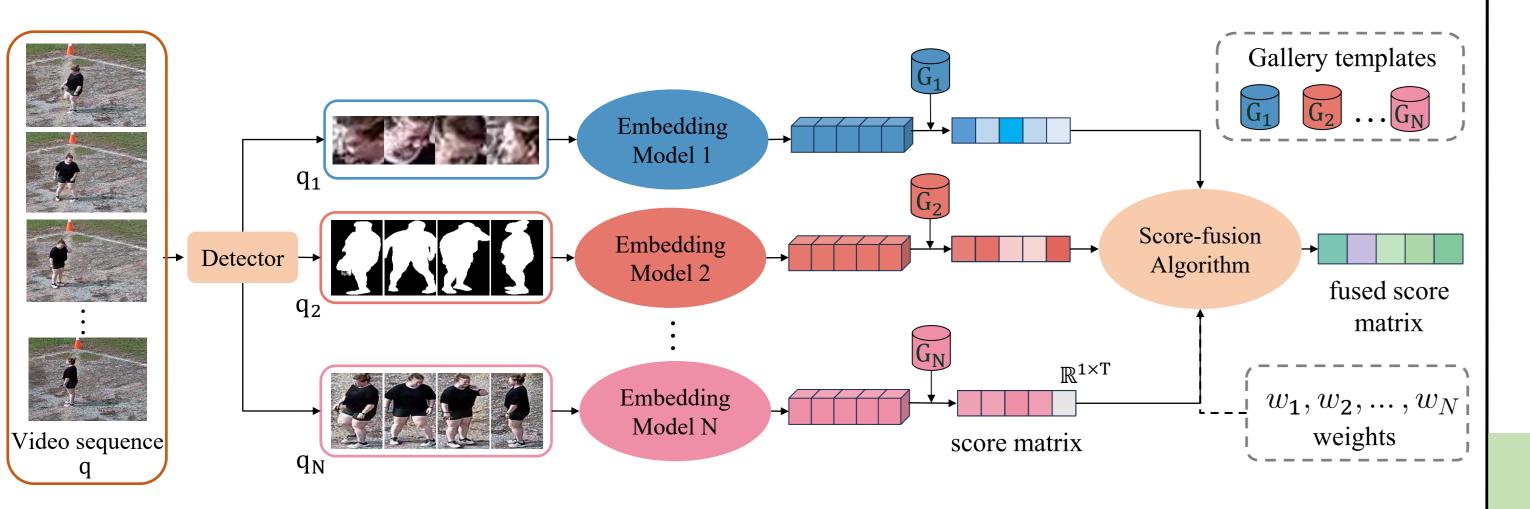
A Quality-Guided Mixture of Score-Fusion Experts Framework for Human Recognition

Jie Zhu¹, Yiyang Su¹, Minchul Kim¹, Anil Jain¹, and Xiaoming Liu¹


¹Michigan State University (MSU)

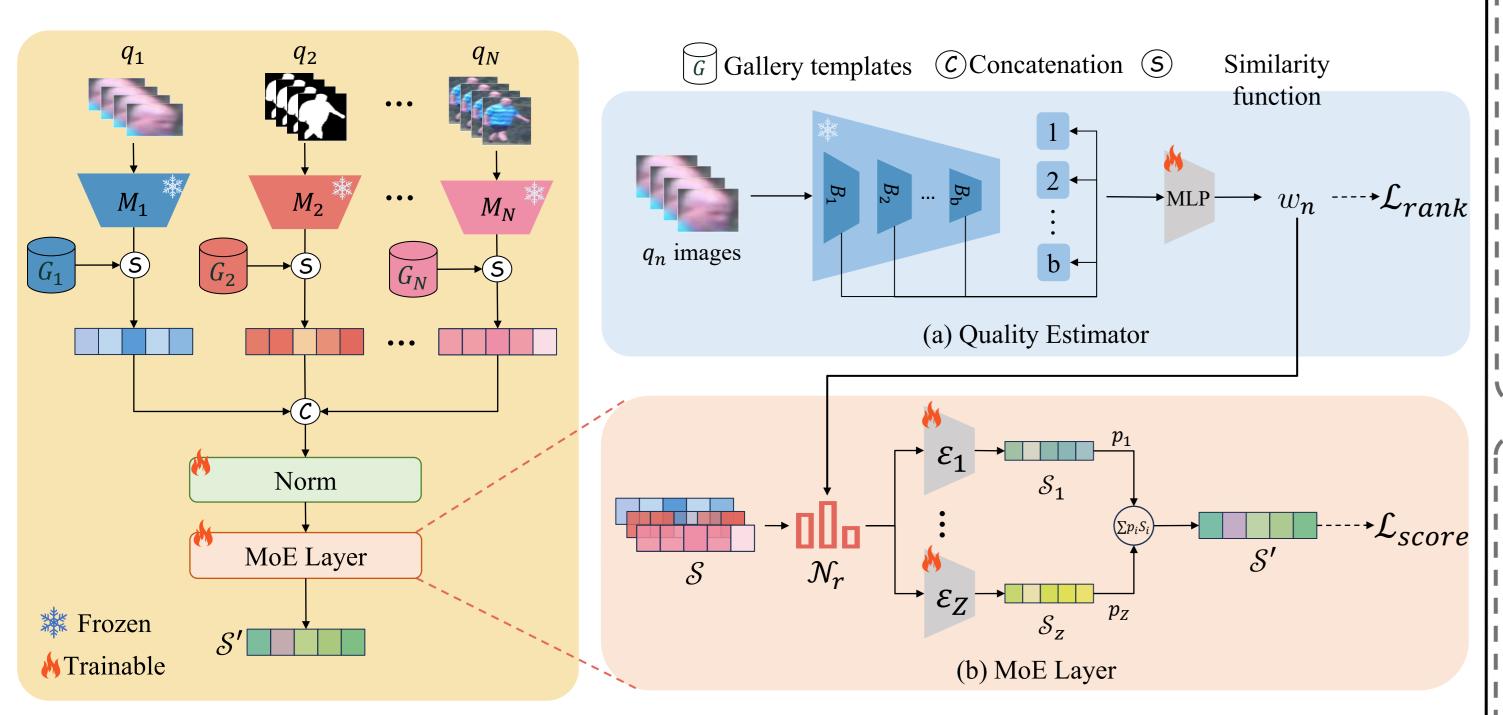
Motivation


1. Low quality vs high quality modality:


For a probe with **low-quality**, we should give a **lower weight.**

For a probe with high-quality, we should give a higher weight.

2. Distribution misalignment & uncertainty importance:



Systematic Whole-body Biometric Recognition

QME Framework

We propose a Quality-Guided Mixture of Score-Fusion Experts (QME) framework to fused the score matrices.

QME dynamically assigns weights to each expert based on input quality, encouraging diverse specializations.

Loss Functions

Pseudo Quality Loss

Provide pseudo quality labels based on the ranking result of the sample:

Examples:

Farsight [31]

Ours

 r_i =1, δ =10, Pseudo quality label: 1 r_i =5, δ =10, Pseudo quality label: 0.56 r_i =20, δ =10, Pseudo quality label: 0

Score Triplet Loss

Traditional triplet loss optimizes relative distances between samples:

$$\mathcal{L}_{tri} = \text{ReLU}(d(a, p) - d(a, n) + m),$$

but it does not constrain the values of negative samples, which are crucial for calculating the threshold in verification and open-set search metrics.

To optimize these metrics, we introduce the score triplet loss:

$$\mathcal{L}_{score} = \text{ReLU}(\mathcal{S}'_{nm}) + \text{ReLU}(m - \mathcal{S}'_{mat})$$

Experiments

Our method consistently outperforms existing approaches across all four benchmarks, achieving SoTA performance in challenging metrics.

	N	ΛΕΛΙ	D			1		C	CVIE			
Method	Comb.	Rank1↑	mAP↑ ′	TAR↑	FNII	R↓ II	Method	Comb.	Rank1↑	mAP↑	TAR↑	FNIR↓
AdaFace* [22]	•	25.0	8.1	5.4	98.8 ±	1.2	AdaFace* [22]	•	94.0	87.9	75.7	13.0 ± 3.5
CAL [15]	_	52.5	27.1	34.7	$67.8 \pm$	7.3	CAL [15]	^	81.4	74.7	66.3	$52.8 \pm 13.$
AGRL [53]		51.9	25.5	30.7	$69.4 \pm$	8.9	BigGait* [57]	*	76.7	61.0	49.7	71.1 ± 6.1
Z-score [47]		54.1	27.4	30.7	$66.5 \pm$	7.0	Z-score [47]		92.2	90.6	73.9	15.1 ± 1.5
Min-max [47]		52.8	24.7	25.0	$71.3 \pm$	6.1	Min-max [47]		91.8	90.9	73.9	15.4 ± 2.5
RHE [17]		52.8	24.8	25.3	$71.2 \pm$	6.2	<i>RHE</i> [17]		91.7	90.2	73.1	16.6 ± 2.5
Weigthed-sum [35]		54.1	27.3	30.3	$66.3 \pm$	= 7.0	Weigthed-sum [35]		91.7	90.6	73.6	15.4 ± 1.8
Asym-AO1 [18]		52.5	22.9	23.6	$71.7 \pm$	5.8	Asym-AO1 [18]		92.3	90.0	74.0	15.9 ± 1.7
BSSF [49]		53.5	27.4	30.5	$65.9 \pm$	7.2	BSSF [49]		91.8	91.1	73.9	14.1 ± 1.3
Farsight [32]		53.8	25.4	26.6	$69.8 \pm$	6.4	Farsight [31]		92.0	91.2	73.9	13.9 ± 1.1
Ours (AdaFace-QE)		55.7	28.2	32.9	$64.6 \pm$	8.2	Ours (AdaFace-QE))	92.6	91.6	<u>75.0</u>	13.3 ± 1.2
Ours (CAL-QE)		55.4	27.9	32.5	$64.3 \pm$	8.7	Ours (CAL-QE)		94.1	90.8	76.2	12.3 ± 1.4
	E	BRIA	R			`			LTCC			
		Face Incl. Trt. Face Restr. Trt.			r. <i>Trt</i> .	Method	Comb.	Rank1↑	mAP↑	TAR↑	FNIR↓	
Mathad Ca	mb	D↑ D20	► ENIID I		D204	ENID	AdaFace* [22]	•	18.5	5.9	2.4	99.8 ± 0
Method Co	. /*	$\mathbf{K} \perp \mathbf{K} / \mathbf{U}'$		IAK	K20	FNIR↓	CAT [15]	_	74.4	10 G	26 7	FO 7 1 7
meinoa Co	IA	11 1120	•				CAL [15]		14.4	40.6	36.7	59.7 ± 7
KPRPE [24]		6.5 80.5		31.5	44.5		AIM [56]	-T	74.8	40.0 40.9	$30.7 \\ 37.0$	66.2 ± 9

BSSF [49]

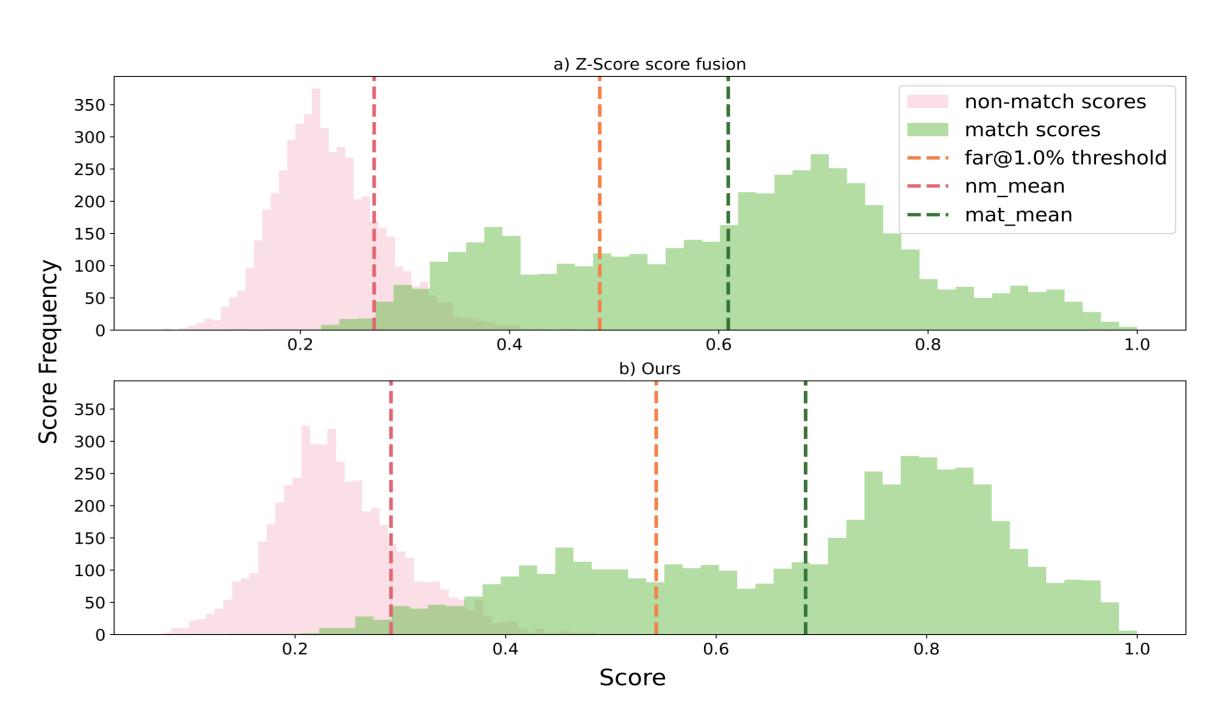
Farsight [31]

 $31.3 \quad 72.4 \pm 8.6$

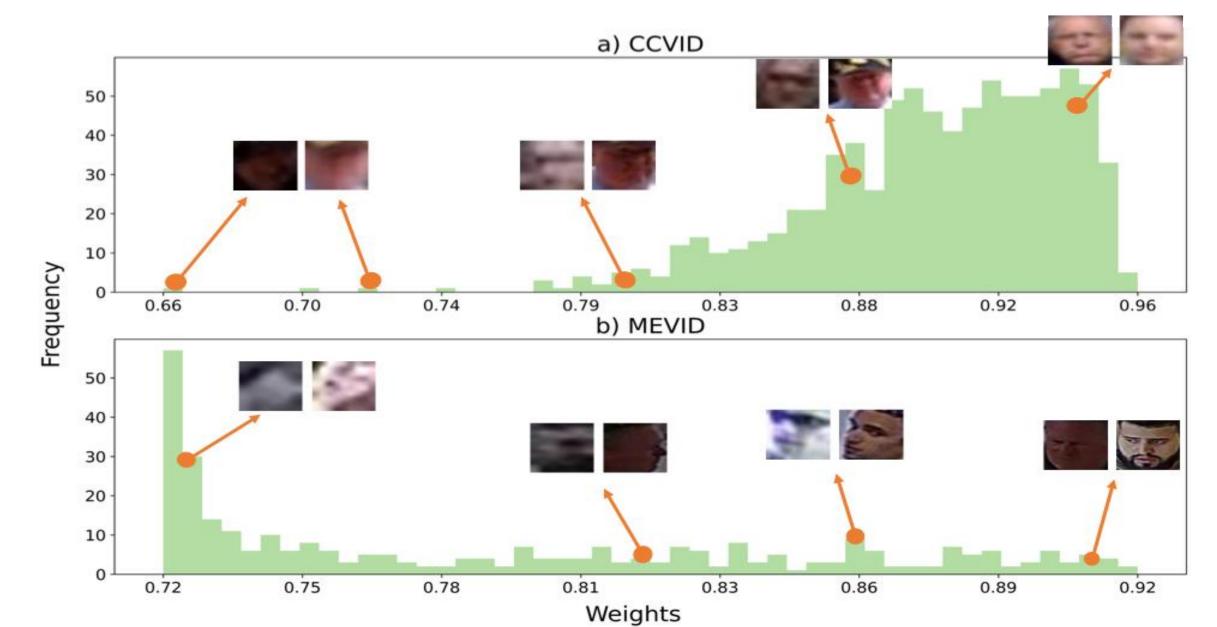
73.8 39.6 35.0 64.3 ± 8.0

Ablation Studies

(1) Effects of proposed component.


$\mathcal{L}_{ ext{scc}}$	ore QE	Z	Rank1†	mAP↑	TAR↑	FNIR↓
X	X	1	49.4	21.6	23.3	84.0
✓	X	1	53.8	24.5	25.3	70.4
X	X	2	54.1	25.5	30.8	65.4
✓	X	2	55.1	27.0	31.3	66.5
	✓	2	55.7	28.2	32.9	64.6

(2) Effects of expert aggregation. Each expert specializes in specific data scenarios and metrics, and their aggregation leads to the best overall performance.


	Expert	Fa	ce Incl.	Trt.	Face Restr. Trt.			
	•	TAR↑	R20↑	FNIR↓	TAR↓	R20↑	FNIR↓	
Ī	$arepsilon_1$	83.6	<u>95.5</u>	<u>41.7</u>	62.0	90.6	<u>66.7</u>	
	$arepsilon_2$	81.8	<u>95.5</u>	46.6	<u>65.0</u>	90.6	68.4	
	Ours $(\varepsilon_1 + \varepsilon_2)$	84.5	95.7	41.2	67.9	90.6	$\boldsymbol{64.1}$	

Visualizations

QME has a clearer boundary between match scores and non-match scores.

The predicted quality weight can dynamically reflect the quality of the input sample:

