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Abstract

Whole-body biometric recognition is a challenging multi-
modal task that integrates various biometric modalities, in-
cluding face, gait, and body. This integration is essen-
tial for overcoming the limitations of unimodal systems.
Traditionally, whole-body recognition involves deploying
different models to process multiple modalities, achiev-
ing the final outcome by score-fusion (e.g., weighted av-
eraging of similarity matrices from each model). How-
ever, these conventional methods may overlook the varia-
tions in score distributions of individual modalities, mak-
ing it challenging to improve final performance. In this
work, we present Quality-guided Mixture of score-fusion
Experts (QME), a novel framework designed for improv-
ing whole-body biometric recognition performance through
a learnable score-fusion strategy using a Mixture of Experts
(MoE). We introduce a novel pseudo-quality loss for qual-
ity estimation with a modality-specific Quality Estimator
(QE), and a score triplet loss to improve the metric per-
formance. Extensive experiments on multiple whole-body
biometric datasets demonstrate the effectiveness of our pro-
posed approach, achieving state-of-the-art results across
various metrics compared to baseline methods. Our method
is effective for multimodal and multi-model, addressing key
challenges such as model misalignment in the similarity
score domain and variability in data quality. Code is avail-
able at the Project Link.

1. Introduction

Whole-body biometrics integrates diverse recognition tasks
such as Face Recognition (FR) [10, 24], Gait Recognition
(GR) [63, 66], and Person Re-identification (ReID) [15, 35]
to overcome unimodal limitations. Whole-body biometrics
benefits from the combined strengths of multiple modali-
ties. This multimodal synergy ensures robust performance
in non-ideal conditions (low-light, occlusion, and missing
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Figure 1. Illustration of score distribution alignment in multi-
modal human recognition. Different models and modalities (e.g.,
face, gait, and body) produce distinct similarity score distributions.
Conventional score-fusion methods struggle with optimal align-
ment and assigning importance weights to each modality, poten-
tially degrading performance.

traits), making it indispensable for security-critical domains
like surveillance and law enforcement.

Effective fusion is pivotal to whole-body recognition.
Current approaches include decision-level fusion, feature-
level fusion, and score-level fusion [51]. In decision-level
fusion, each modality first makes an identity decision based
on its extracted features. The individual decisions are
then combined based on either decision scores or ranks.
Feature-level fusion combines extracted features from dif-
ferent modalities to obtain a single representation [5, 27].
However, this approach is often hindered by inconsistencies
across modalities in biometrics, as different traits may not
necessarily complement each other effectively. Most im-
portantly, feature-level fusion requires suitable paired mul-
timodal datasets. Many available datasets such as Web-
Face42M [67] for face recognition do not contain whole-
body data, while other datasets like PRCC [61], LTCC [43],
and CCPG [32] widely used in person ReID and gait recog-
nition, are limited by dataset size, the masking of faces, or
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insufficient number of subjects for generalizable training.
Compared to feature-level fusion, score-level fusion in-

tegrates the similarity scores or feature (embedding) dis-
tances generated by individual models. Score-level fu-
sion offers computational efficiency and modular flexibility
compared to feature-level fusion, enabling seamless inte-
gration of heterogeneous modalities while preserving indi-
vidual models’ performance. However, conventional score-
fusion techniques are limited by their inability to fully uti-
lize the different distributions of match (genuine) and non-
match (impostor) scores produced by each model, as shown
in Fig. 1. Additionally, finding the optimal weight for each
model in the fusion process is challenging, even using grid
search [33], leading to suboptimal performance.

To address these challenges, we propose a Quality Es-
timator (QE) and pseudo-quality loss that leverages pre-
trained models to generate pseudo-quality labels, elimi-
nating laborious manual annotation. We develop a Mix-
ture of Score-Fusion Experts method, where each expert
learns a distinct fusion strategy (e.g., one prioritizes face-
gait synergy, and another handles occlusion scenarios). Ex-
perts’ contributions are dynamically weighted by QE pre-
dictions, ensuring robustness to sensor noise and missing
modalities. To improve metric learning performance, we
present a score triplet loss that enforces margin separation
between match/non-match scores while suppressing non-
match magnitudes, directly aligning with metrics like 1:1
verification and 1:N open-set search. This approach im-
proves score-level alignment between modalities without
the need for retraining biometric backbones nor requiring
tremendous training data. Our main contributions are:

• We propose a Quality Estimator (QE) that employs
pseudo quality loss—derived from pretrained models and
ranking performance—to assess biometric modality qual-
ity without the need for human-labeled data.

• We introduce QME, a multimodal biometric recognition
framework that integrates a learnable, modality-specific
score-fusion method. QME dynamically combines di-
verse fusion strategies, adapting to sensor noise, occlu-
sions, and missing modalities.

• We introduce a novel score triplet loss for metric learn-
ing by enforcing a match/non-match score margin, di-
rectly improving key metrics like verification accuracy
and open-set search effectiveness.

• Experiments on multiple whole-body biometric datasets
validate our approach’s superior robustness over leading
score-fusion methods and models.

2. Related Work
2.1. Score-fusion
Score-level fusion integrates similarity scores from multi-
ple modalities to optimize recognition decisions [51]. Tra-

ditional score-fusion methods include Z-score and min-max
normalization. [19, 38, 41, 42, 58] introduce likelihood ratio
based score fusion. Ross et al. propose mean, max, or min
score-fusion, where the final score is determined by averag-
ing, the highest, or the lowest score [23, 45, 64]. Recent lit-
erature categorizes score fusion into two paradigms: fixed-
rule methods, employing predefined heuristics (e.g., prede-
fined weights), and trained-rule methods, utilizing learned
parameters optimized through training (e.g., SVM) [6, 40,
55]. Score-fusion methods offer several advantages: 1) they
are robust to missing modality inputs, and 2) they sim-
plify alignment, as the domain gap between modalities is
smaller than feature-space alignment. However, challenges
remain in determining the optimal alignment and weight-
ing for each model and identifying the most effective fusion
strategy. We aim to explore a better way of assessing the
contribution of each modality and develop a more general-
izable score-fusion method.

2.2. Biometric Quality Assessment
Unlike generic image quality assessment [46], biometric
quality assessment is the process of evaluating the qual-
ity of biometric data (e.g., facial images), which directly
influences recognition performance [13, 39, 57]. This as-
sessment typically follows initial authentication to filter
out spoofed or synthetic samples [16, 17, 65]. While
some studies target fingerprints and irises [3, 11, 28], oth-
ers apply learning-based methods for facial image qual-
ity [2, 4, 21, 24, 25, 37, 50, 56]. However, many such
methods rely on specialized training procedures incompat-
ible with pretrained models. In this work, we introduce a
method to train a general QE by distilling knowledge from
the pretrained model, providing a versatile approach to bio-
metric quality assessment.

2.3. Whole-Body Biometric Recognition
As illustrated in Fig. 2, whole-body biometric systems in-
tegrate detectors, encoders, and fusion modules to unify
multi-modal traits (e.g., face, gait) for robust identifica-
tion [9]. Key to the design is effectively leveraging comple-
mentary strengths while mitigating individual weaknesses:
facial recognition excels with high-resolution frontal im-
ages but degrades under non-ideal conditions (e.g., large
standoff, off-angle views), while gait and ReID models
contend with clothing/posture variations [34, 36]. Recent
advances [7, 18, 22, 44, 53, 60] highlight multi-attribute
fusion but largely overlook the heterogeneity inherent in
whole-body modalities, focusing mainly on homogeneous
sensor data. Efforts to incorporate facial features into
ReID [14, 27, 30, 31, 34] often prioritize modular additions
over optimizing fusion efficacy. Fusion methods for com-
prehensive whole-body biometric recognition remain chal-
lenging, and require in-depth exploration.



Score-fusion

Algorithm

Embedding 

Model 1

…

Embedding 

Model 2

Embedding 

Model N

…

Video sequence

q1

qN

q2

score matrix

ℝ1×T

fused score matrix

…G1 G2 GN

Gallery templates

Detector

q

G1

G2

GN

weights

1 2

Figure 2. General framework for whole-body biometric recognition. An input video sequence q is processed by a detector to extract
different modality queries, which are fed into multiple embedding models. Each model generates similarity scores by comparing the
extracted features with T gallery templates. Our work focuses on score-fusion algorithms that produce the final decision based on input
score matrices and modality weights.

3. Methodology

In this section, we introduce the proposed QME method,
which leverages quality assessment and learnable score-
fusion with MoE across multiple modalities. Our approach
is specifically designed to tackle challenges related to model
misalignment in score-level distributions and varying data
quality in whole-body biometric recognition.

Overview. In biometric evaluation, a query (or probe) refers
to a sample sequence needing identification/verification
against a gallery of enrolled subjects in the system. Each
gallery subject may have multiple videos/images to extract
gallery templates. Given a model Mn in the embedding
model set {M1,M2, . . . ,MN} with a query and gallery
templates where N is the number of models, we compute
the query feature qn ∈ RL×dn and gallery template features
Gn ∈ RT×dn , where L represents the sequence length of
the query (number of images) and T is the total number
of gallery templates (videos/images) across all gallery sub-
jects, and dn is the feature dimension of Mn. We further
compute the average of qn to obtain the query-level fea-
ture vector in Rdn , and then compute its similarity with
Gn to get the query score matrix Sn ∈ R1×T , represent-
ing the similarity score of the query with each gallery tem-
plate. Our training process involves two stages: (1) training
QE, and (2) freezing QE while training the learnable score-
fusion model.

3.1. Quality Estimator (QE)

The goal of the QE is to predict the input quality of a given
modality. We hypothesize that if the input quality for a par-
ticular modality is poor, the system should shift focus to
other modalities to enhance overall performance. As illus-
trated in Fig. 3(a), to train a QE for Mn, we collect the in-
termediate features In ∈ RL×U×Pn×dn from Mn, where

U is the number of blocks, Pn is the patch size of Mn.
In captures various levels of semantic information from the
model. We follow [25] to extract intermediate features from
the backbone and compute the mean and the standard devi-
ation, reducing In to a representation in RL×2dn . This rep-
resentation is then fed into an encoder to predict query-level
quality weight wn ∈ R produced by sigmoid function.

Pseudo Quality Loss. The challenge of training QE is the
lack of human-labeled qualities. Empirically, we do not
have the quality label of the query images. However, we can
know the ranking result by sorting the similarities between
the query feature and training gallery features. A higher
ranking result indicates the input images are close to their
gallery center. We assume that if the ranking result of the in-
put is better, the quality of the input will be higher. Hence,
we propose a pseudo quality loss Lrank using the ranking
result of the input for the pretrained model Mn:

Lrank =
∑
i∈L

MSELoss

(
wi,ReLU(

δ − ri
δ − 1

)

)
. (1)

Here ri is the ranking result of the query feature qi, wi

is the predicted quality weight, and δ is a hyperparameter
to adjust the sensitivity of the ranking threshold. To obtain
ri, we compute the similarity matrix between qi and Gn.
Lower δ will push the predicted ri to 0 if the ranking result
is out of δ. Conversely, higher δ will cause the QE to predict
a value closer to 1 as it has a higher tolerance for the ranking
result. Our proposed QE offers several benefits: (1) It can
generalize across all pretrained models (not only FR mod-
els) by learning from these models and identifying charac-
teristics of challenging samples, and (2) it can be trained on
any dataset, whether in-domain or out-of-domain. While
pretrained models may exhibit biases toward their training
data, which can hinder generalization, challenging samples
may originate from either in-domain or out-of-domain data.
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Figure 3. The architecture of the proposed QME framework. It includes a Norm layer and an MoE layer to process concatenated score
matrix S from the model set M1,M2, . . . ,MN . The MoE layer contains experts ε1, ε2, . . . , εZ to individually encode the fused score
matrices. A quality estimator (QE) uses the intermediate feature In from the backbone block B1, B2, . . . , Bb to generate weights wn,
which control p1, p2, . . . , pZ for a weighted sum, producing the final fused score matrix S ′.

3.2. Mixture of Score-fusion Experts

The concept of MoE [12, 48] comes from the NLP com-
munity, where they use MoE layers to replace feed-forward
network (FFN) layers in the transformer blocks. With the
sparsity of experts and the router network, each expert can
focus on handling different tokens. In addition, some spe-
cial loss functions are designed to control the behavior of
the router [8, 29, 48, 49, 54, 68].

Inspired by this, we design a MoE layer (shown in
Fig. 3(b)) with multiple score-fusion experts, controlled by
Nr that learns to perform score-fusion based on quality
weights. Unlike in traditional MoE setups, where a router
network predicts assignment probabilities from inputs, the
similarity score in our case is a high-level semantic fea-
ture, lacks fine-grained cues about query quality. Instead,
we use the proposed QE to predict the quality weight of the
query to imply the reliability of the input modality, guid-
ing the selection process. For an expert ϵz from expert set
{ϵ1, ..., ϵZ} where Z is the number of experts, it receives a
concatenated score matrix S ∈ RT×N from all modalities
and predict a fused score matrix Sz ∈ R1×T . Given wn as
the modality-specific quality weight and εn controlled by
pn = wn, we aim for expert εn to prioritize the selected
modality when wn is high. Conversely, when wn is low,
other experts contribute more to the final score matrix and
shift the focus to other modalities. This approach ensures
that higher-quality modalities have a greater influence on
the output, while lower-quality ones contribute less, opti-
mizing overall performance.

3.3. Quality-Guided Mixture of Score-fusion Ex-
perts (QME)

Based on Sec. 3.1 and 3.2, we further introduce QME.
As illustrated in Fig. 3 (left), for a query feature set
Q = {q1, q2, . . . , qN} processed by the model set
{M1,M2, . . . ,MN}, we generate the concatenated input
score matrix S = {S1,S2, . . . ,SN} ∈ RT×N . For models
that use Euclidean distance as a metric, we convert distances
into similarity scores:

1

1 + Euc(q, g)
, (2)

where Euc(q, g) represents Euclidean distance between the
query feature q and the gallery feature g. This transforma-
tion remaps Euclidean distances to align with the range of
Cosine Similarity, where larger values indicate higher simi-
larity. We then normalize S using a BatchNorm layer. Af-
ter normalization, S is fed into the MoE layer, which con-
tains a router network Nr and multiple score-fusion experts
{ε1, ε2, . . . , εZ}. Each expert is specialized to handle spe-
cific input conditions (i.e., similarity values), with the router
selecting the most suitable expert based on quality assess-
ment. Nr takes wn as the input and generates the weight
of assigning input to all experts {p1, p2, . . . , pZ} where pZ
is the weight of contribution of expert εZ . The final fused
score matrix S ′ is computed as a weighted sum of the out-
puts from all experts:

S ′ =
∑
z∈Z

pzSz, (3)



where Sz is the output score matrix from εz . By using qual-
ity weight to modulate S ′, each expert learns how the con-
tributions of different modalities’ scores to S ′ should be ad-
justed in response to changes in their quality levels.

Score Triplet Loss. The triplet loss [47] optimizes relative
distances between samples:

Ltri = ReLU(d(a, p)− d(a, n) +m), (4)

where d(a, p) is the distance between anchor a and positive
sample p, d(a, n) is the distance between anchor a and neg-
ative sample n, and m enforces a margin. The triplet loss fo-
cuses on maintaining a boundary between positive and neg-
ative pairs, but it does not effectively constrain the value of
non-match scores. The verification and open-set search rely
on a threshold τ . For example, TAR@τ%FAR measures the
acceptance rate of the match samples such that only τ% of
non-match scores can be accepted as matches. To optimize
these metrics, we introduce the score triplet loss:

Lscore = ReLU(S ′
nm) + ReLU(m− S ′

mat), (5)

where S ′
nm is the non-match scores of S ′, S ′

mat is the match
score of S ′. Unlike the original triplet loss, this formulation
provides more constraints:
• Directly suppresses non-match scores (ReLU(S ′

nm)): en-
couraging they remain below decision thresholds.

• Enforces a margin on match scores (ReLU(m − S ′
mat)):

guaranteeing they exceed non-matches by m.
By jointly optimizing score magnitudes and relative mar-

gins, the loss aligns training objectives with evaluation met-
rics (e.g., TAR@FAR), reducing false acceptances while
maintaining discriminative power.

4. Experiments
To rigorously validate our method’s robustness, we in-
tentionally leverage a diverse set of embedding models
spanning multiple modalities, including face recognition
model [24, 26], gait recognition and person ReID mod-
els [15, 35, 59, 62, 63]. This cross-modal diversity sys-
tematically avoids overfitting to any single modality’s bi-
ases, demonstrating that our framework generalizes across
heterogeneous feature spaces. We stress-test our method’s
ability to harmonize divergent embeddings—a critical re-
quirement for real-world deployment, where the distribu-
tion of the test set is unpredictable.

Baseline Setup. We benchmark our method against tradi-
tional and contemporary fusion strategies spanning three
categories: (1) Statistical Fusion: Min/Max score fu-
sion [23], Z-score normalization and min-max normaliza-
tion [52]; (2) Representation Harmonization: Rank-based
histogram equalization (RHE) [19]; and (3) Model-driven
learnable score-fusion: Farsight [34], SVM-based (Support

Dataset Type #Subjects (Train/Test/Non-mated) #Query #Gallery

CCVID Video 75 / 151 / 31 834 1074
MEVID Video 104 / 54 / 11 316 1438
LTCC Image 77 / 75 / 15 493 7050
BRIAR Video 775 / 1103 / (566, 522) 10371 12264

Table 1. Statistics of the evaluation set of human recognition
benchmarks. BRIAR has two gallery protocols (i.e., 2 non-mated
lists) for open-set search. The number of query and gallery indi-
cate the number of images/sequences for image/video datasets.

Vector Machine) score fusion (BSSF) [55], Weighted-sum
with learnable coefficients [40] and AsymA-O1’s asymmet-
ric aggregation [20]. We also compare with SapiensID [27],
a SoTA multimodal model for human recognition. This
comprehensive comparison validates our method’s superi-
ority in balancing discriminative feature preservation.

Evaluation Metrics. We adopt standard person ReID met-
rics like Cumulative Matching Curve (CMC) at rank-1 and
mean Average Precision (mAP) [15, 35]. To holistically as-
sess whole-body biometric systems, we extend evaluation to
verification (TAR@FAR: True Acceptance Rate at a False
Acceptance Rate) and open-set search (FNIR@FPIR: False
Non-Identity Rate at a specified False Positive Identification
Rate).
• TAR@FAR reflects real-world security needs: measuring

reliable genuine acceptance rates while rejecting impos-
tors within controlled error tolerance.

• FNIR@FPIR handles open-set scenarios (common in
surveillance), rejecting unseen identities robustly without
compromising known match detection.
Together, these metrics ensure that the proposed methods

achieve a balanced trade-off among accuracy (CMC/mAP),
security (TAR@FAR), and generalizability (FNIR@FPIR),
reflecting real-world deployment requirements through a
comprehensive and practical performance evaluation.

Datasets. We evaluate our method on diverse datasets
spanning static images, video sequences, multi-view cap-
tures, and cross-modal biometric data (shown in Tab. 1) to
rigorously assess generalization across varying resolutions,
viewpoints, and temporal dynamics. This multi-faceted
benchmarking ensures robustness to real-world challenges
such as occlusion, motion blur, and sensor heterogeneity,
validating practical applicability in unconstrained environ-
ments. More details are provided in the Supplementary.
Evaluation Protocol. For CCVID, MEVID, and LTCC,
we evaluate under general conditions, as the focus of score-
fusion is not only on the Clothes-Changing (CC) scenario.
For BRIAR, we follow Farsight [35] and conduct two test
settings: Face-Included Treatment, where facial images are
clearly visible, and Face-Restricted Treatment, where facial
images are in side view or captured from long distances.



4.1. Implementation Details
In our experiments, we set N as either 2 or 3, incorporating
multiple modalities as inputs for a comprehensive evalua-
tion. We adopt the methodology of CAFace [25] to precom-
pute gallery features for all training subjects across modal-
ities. Specifically, pre-trained biometric backbones process
all video sequences or images in the training dataset be-
fore training and use average pooling to generate modality-
specific center features as gallery features. For open-set
evaluation, we follow [53] to construct 10 random subsets
of gallery subjects which contain around 20% of the sub-
jects in the test set as the non-mated lists (numbers of non-
mated subjects in Tab. 1), and report the median and stan-
dard deviation values. During training, we randomly sam-
ple L = 8 frames from each tracklet video and aggregate
their features, either through averaging or using specific ag-
gregation methods from the models, to produce query-level
features. We set the number of experts to Z = 2, with
p1 = wn, and p2 = 1 − p1. δ is set to 3 for CCVID,
MEVID, and LTCC, and 20 for BRIAR. ε1, ε2, . . . , εz rep-
resents 3-layer MLPs. The parameter m in Eq. 5 is set to
3. We use Adam optimizer with a learning rate of 5e−5

and a weight decay of 1e−2. We apply a Cosine annealing
warm-up strategy to adjust the learning rate. For learnable
baseline methods, we train them on the same training set.
More details are provided in the Supplementary.

4.2. Experimental Results
Tab. 2, 3, and 4 show the performance of our method on
CCVID, MEVID, LTCC, and BRIAR compared with other
score-fusion methods. For Z-score and Min-max normal-
ization methods, we average the scores after the normaliza-
tion. To ensure a fair comparison with GEFF [1], we replace
the FR model in GEFF with AdaFace and apply Gallery En-
richment (GE) to our method, as GE adds selected query
samples into the gallery. GEFF requires a hyperparameter
α to combine the ReID and FR score matrices and cannot
extend to three modalities.

In CCVID, the FR model performs particularly well, as
most body images are front-view and contain well-captured
faces. As a result, the improvement through multimodal
fusion is understandably limited. In MEVID, LTCC, and
BRIAR (Face-Restricted Treatment), the performance of
the FR model is not comparable to that of the ReID models.
This is mainly due to (1) the presence of multiple views and
varying distances in captured images, which often results
in low-quality images, and (2) label noise and detection er-
rors. The performance of score fusion surpasses that of in-
dividual models and modalities, suggesting that each model
contributes complementary information. Our method effec-
tively harnesses additional useful information in complex
scenarios, leading to an even greater performance boost
in MEVID and LTCC than in CCVID. While other score-

Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [24] ♦ 94.0 87.9 75.7 13.0± 3.5

CAL [15] ♠ 81.4 74.7 66.3 52.8± 13.3
BigGait∗ [63] ♣ 76.7 61.0 49.7 71.1± 6.1

SapiensID [27] ● 92.6 77.8 - -

GEFF† [1]
♦ ♠ 89.4 87.5 84.0 13.3± 1.3

Ours 93.3 89.5 86.9 11.4± 1.5

Min-Fusion [23]

♦ ♠ ♣

87.1 79.2 62.4 48.5± 8.7
Max-Fusion [23] 89.9 89.3 73.4 23.0± 10.1

Z-score [52] 92.2 90.6 73.9 15.1± 1.5
Min-max [52] 91.8 90.9 73.9 15.4± 2.5

RHE [19] 91.7 90.2 73.1 16.6± 2.5
Weigthed-sum [40] 91.7 90.6 73.6 15.4± 1.8

Asym-AO1 [20] 92.3 90.0 74.0 15.9± 1.7
BSSF [55] 91.8 91.1 73.9 14.1± 1.3

Farsight [34] 92.0 91.2 73.9 13.9± 1.1
Ours (AdaFace-QE) 92.6 91.6 75.0 13.3± 1.2

Ours (CAL-QE) 94.1 90.8 76.2 12.3± 1.4

(a) Performance on CCVID Dataset.

Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [24] ♦ 25.0 8.1 5.4 98.8± 1.2

CAL [15] ♠ 52.5 27.1 34.7 67.8± 7.3
AGRL [59] ■ 51.9 25.5 30.7 69.4± 8.9

GEFF† [1]
♦ ♠ 32.9 18.8 19.9 78.7± 8.1

Ours 33.5 19.9 26.2 72.5± 10.3

Min-Fusion [23]

♦ ♠ ■

46.8 21.2 28.0 70.4± 8.0
Max-Fusion [23] 33.2 14.9 8.3 97.4± 1.6

Z-score [52] 54.1 27.4 30.7 66.5± 7.0
Min-max [52] 52.8 24.7 25.0 71.3± 6.1

RHE [19] 52.8 24.8 25.3 71.2± 6.2
Weigthed-sum [40] 54.1 27.3 30.3 66.3± 7.0

Asym-AO1 [20] 52.5 22.9 23.6 71.7± 5.8
BSSF [55] 53.5 27.4 30.5 65.9± 7.2

Farsight [35] 53.8 25.4 26.6 69.8± 6.4
Ours (AdaFace-QE) 55.7 28.2 32.9 64.6± 8.2

Ours (CAL-QE) 55.4 27.9 32.5 64.3± 8.7

(b) Performance on MEVID Dataset.

Table 2. Our performance on CCVID and MEVID datasets in the
general setting. [Keys: Best and second best performance; Comb.:
model combination; ∗: zero-shot performance; †: reproduced us-
ing AdaFace [24] as the face module; ♦: AdaFace for face modal-
ity; ♣; BigGait for gait modality; ♠: CAL of body modality; ■:
AGRL for body modality; ●: SapiensID for face and body modal-
ity; TAR: TAR@1%FAR; FNIR: FNIR@1%FPIR.]

fusion approaches do not consistently perform well across
all metrics or need to manually select hyperparameters, our
method achieves higher performance across the board, with
notable improvements in both closed-set and open-set eval-
uations, especially in MEVID and BRIAR. Additionally,
our approach is generalizable, adapting effectively to var-
ious modality combinations, model combinations, and sim-
ilarity metrics, irrespective of whether the backbones are
fine-tuned on the target dataset or not. More experimental
results can be found in the Supplementary.



Method Comb. Rank1↑ mAP↑ TAR↑ FNIR↓
AdaFace∗ [24] ♦ 18.5 5.9 2.4 99.8± 0.2

CAL [15] ♠ 74.4 40.6 36.7 59.7± 7.3
AIM [62] ■ 74.8 40.9 37.0 66.2± 9.2

SapiensID [27] ● 72.0 34.6 - -

Ours ♠ ■ 75.3 42.5 38.1 58.6± 9.6

Min-Fusion [23]

♦ ♠ ■

38.1 13.5 12.4 81.9± 6.0
Max-Fusion [23] 62.5 33.3 16.8 94.8± 4.7

Z-score [52] 73.0 37.5 30.4 68.7± 9.2
Min-max [52] 73.2 38.1 31.9 75.1± 9.2

RHE [19] 70.4 34.2 21.5 78.0± 10.0
Weigthed-sum [40] 73.2 37.8 31.3 72.4± 8.6

Asym-AO1 [20] 71.2 32.9 19.1 76.3± 8.9
BSSF [55] 73.5 39.1 34.2 68.9± 8.5

Farsight [34] 73.2 37.8 31.3 72.4± 8.6
Ours 73.8 39.6 35.0 64.3± 8.0

Table 3. Our performance on LTCC. [Keys: Best and second best
performance; Comb.: model combination; ∗: zero-shot perfor-
mance; ♦: AdaFace for face modality; ♠: CAL of body modal-
ity; ■: AIM for body modality; ●: SapiensID for face and body
modality; TAR: TAR@1%FAR; FNIR: FNIR@1%FPIR.]

4.3. Analysis
Our experiments reveal two critical insights:
1. While existing methods perform well on high-quality fa-

cial datasets, they falter under challenging in-the-wild
conditions characterized by non-frontal angles and vari-
able capture quality.

2. Our framework demonstrates superior robustness in
these complex scenarios, achieving markedly larger per-
formance gains compared to controlled environments.

This divergence stems from fundamental dataset character-
istics: constrained benchmarks predominantly contain opti-
mal facial captures where conventional face recognition ex-
cels, whereas unconstrained datasets reflect real-world im-
perfections that degrade reliability. The limitations of prior
approaches arise from their dependence on high-quality fa-
cial predictions, which introduce noise when inputs diverge
from ideal conditions. Conversely, our method dynamically
adapts to input quality variations, synthesizing multi-modal
cues to maintain accuracy without additional hardware or
data requirements. This capability underscores its practical
viability in deployment scenarios where sensor fidelity and
environmental conditions are unpredictable.

Single Model Could Be Better than Fusion. While fu-
sion methods generally outperform individual models, ex-
ceptions exist (e.g., LTCC), where 3-modality fusion un-
derperforms due to weak face modality. However, fusion
with CAL and AIM shows better results, serving as a direc-
tion for further mitigating such effects in future work. More
results are in the Supplementary.

Comparison with SoTA Human Recognition Model. We
benchmark against SapiensID [27] on the CCVID and
LTCC datasets. While SapiensID demonstrates competi-

Method Comb.
Face Incl. Trt. Face Restr. Trt.

TAR↑ R20↑ FNIR↓ TAR↑ R20↑ FNIR↓
KPRPE [26] ♦ 66.5 80.5 54.8 31.5 44.5 81.3
BigGait [63] ♣ 66.3 93.1 72.7 61.0 90.4 76.3

CLIP3DReID [35] ♠ 55.8 83.5 80.1 47.9 79.3 83.4

Min-Fusion [23]

♦ ♣ ♠

70.9 86.5 55.6 39.1 58.0 77.1
Max-Fusion [23] 68.7 93.0 72.5 61.6 90.6 76.1

Z-score [52] 78.5 92.3 43.8 51.1 83.9 72.2
Min-max [52] 82.4 96.0 46.9 61.4 91.5 68.5

RHE [19] 82.8 95.7 44.2 64.9 90.8 67.1
Weigthed-sum [40] 84.0 95.4 43.2 62.6 90.2 68.1

Asym-AO1 [20] 83.4 95.1 42.4 58.5 90.0 66.9
Farsight [34] 82.4 95.8 46.1 65.7 91.0 68.2

Ours 84.5 96.0 41.2 67.9 90.6 64.1

Table 4. Our performance on BRIAR Evaluation Protocol 5.0.0.
[Keys: Best and second best performance; Comb.: model combi-
nation; Face Incl. Trt.: Face-Included Treatment; Face Restr. Trt.:
Face-Restricted Treatment; ♦: AdaFace for face modality; ♣: Big-
Gait for gait modality; ♠: CLIP3DReID of body modality; TAR:
TAR@0.1%FAR; R20: Rank20; FNIR: FNIR@1%FPIR.]

Lscore QE Z Rank1↑ mAP↑ TAR↑ FNIR↓
✗ ✗ 1 49.4 21.6 23.3 84.0
✓ ✗ 1 53.8 24.5 25.3 70.4
✗ ✗ 2 54.1 25.5 30.8 65.4
✓ ✗ 2 55.1 27.0 31.3 66.5
✓ ✓ 2 55.7 28.2 32.9 64.6

Table 5. Ablation study results on MEVID. In the absence of
the QE setting (i.e., QE ✗), we average the outputs from experts.
[Keys: TAR= TAR@1%FAR; FNIR= FNIR@1%FPIR.]

tive or superior performance relative to certain score-fusion
methods, our method consistently achieves optimal results.
This performance advantage substantiates the critical im-
portance of score-fusion algorithm and our proposed QME.

4.4. Ablation Studies

Effects of Lscore, QE, and Z. Tab. 5 illustrates the effects
of Lscore, QE, and the number of score-fusion experts Z.
Compared to Ltri, Lscore yields significant performance im-
provements across all metrics, regardless of z, underscor-
ing the importance of extra boundary for non-match scores.
We further observe that increasing the number of experts
Z gradually improves performance, indicating that combin-
ing multiple experts enriches the model’s decision-making
process by capturing diverse perspectives in complex multi-
modal settings. Moreover, incorporating QE guidance fur-
ther boosts performance by enabling quality-aware weight-
ing, allowing each expert to focus on the most relevant fea-
tures for a given input. This reflective weighting strategy
allows the experts to learn more effectively by prioritizing
high-quality information, ultimately enhancing the overall
robustness and accuracy of the model.



Expert Face Incl. Trt. Face Restr. Trt.

TAR↑ R20↑ FNIR↓ TAR↓ R20↑ FNIR↓
ε1 83.6 95.5 41.7 62.0 90.6 66.7
ε2 81.8 95.5 46.6 65.0 90.6 68.4

Ours (ε1 + ε2) 84.5 95.7 41.2 67.9 90.6 64.1

Table 6. Effects of the mixture of score-fusion experts on BRIAR.
ε1 has a better performance in Face Incl. Trt., while ε2 ex-
perts in Face Restr. Trt.. [Keys: Face Incl. Trt.= Face In-
cluded Treatment; Face Restr. Trt.= Face Restricted Treatment;
TAR=TAR@0.1%FAR; R20=Rank20; FNIR=FNIR@1%FPIR.]

Effects of Mixture of Score-fusion Experts. Tab. 6
analyzes the effects of the mixture of score-fusion ex-
perts compared to single-expert performance. We con-
duct the ablation study on BRIAR as Face Included Treat-
ment and Face Restricted Treatment settings are closely re-
lated to face quality weights. ε1 achieves better results
in TAR@0.1%FAR for Face Included Treatment and in
FNIR@1%FPIR across all settings, while ε2 performs bet-
ter in TAR@0.1%FAR for Face Restricted Treatment. This
is because the FR model excels in identifying true positive
pairs, resulting in lower FNIR@1%FPIR. Guided by p1, ε1
learns to prioritize the FR model, while ε2 focuses on ReID
and GR models. Fusing both experts’ scores improves over-
all performance, demonstrating that using multiple experts
enhances final performance and allows each expert to cap-
ture distinct information.

Effects of QE for Other Modalities. We validate the pro-
posed QE by evaluating the performance of QME using the
QE trained from CAL as input to Nr in Tab. 2 (denoted
as CAL-QE). When using QE from CAL, the performance
is comparable to that of QE from AdaFace, with both sig-
nificantly outperforming baseline methods. These results
demonstrate the flexibility and robustness of QME.

4.5. Visualization

Score Distribution. Fig. 4 visualizes the distribution
of non-match scores, match scores, and the threshold
FAR@1% for both Z-score and our method on CCVID.
To ensure a balanced comparison between the two distribu-
tions, we randomly sample an equal number of non-match
and match scores. Compared to the Z-score score-fusion,
our approach boosts match scores while keeping non-match
scores within the same range. This adjustment validates the
effects of score triplet loss to improve the model’s ability to
distinguish between matches and non-matches.

Quality Weights. Fig. 5 visualizes the distribution of pre-
dicted quality weights for facial images in the CCVID and
MEVID test sets. Note that these weights represent video-
level quality weights, obtained by averaging the quality
weights of each frame in the video sequence. CCVID has
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Figure 4. Score distributions of the CCVID test set. [Keys:
nm mean = mean value of non-match scores; mat mean = mean
value of match scores.]

Figure 5. The distribution of AdaFace quality weights for the
CCVID and MEVID datasets, illustrated with examples showcas-
ing a range of quality weights.

a higher proportion of high-quality weights, as most im-
ages are captured from a front view. In contrast, MEVID
shows more variability in quality weights due to detection
noise and varying clarity. The visualization indicates that
our method effectively estimates image quality. The use of
ranking-based pseudo-labels encourages the model to fo-
cus on relative quality, making it more robust to outliers.
This guides the score-fusion experts to prioritize the most
reliable modality based on quality. Visualization of CAL
quality weight can be found in the Supplementary.

5. Conclusion
We propose QME, a framework for whole-body biomet-
ric recognition that dynamically fuses modality-specific ex-
perts through a novel quality-aware weighting. To enhance
discriminative power, we introduce a score triplet loss that
explicitly enforces a margin between match and non-match
scores. Experiments across diverse benchmarks demon-
strate the superior performance of our method, serving as
a general framework for multi-modal score fusion, which
can be applied to any system with heterogeneous models.
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